THE 2021 NATIONAL NUCLEAR PHYSICS SUMMER SCHOOL

LATTICE QCD

AND
NUCLEON(US) STRUCTURE
ZOHREH DAVOUDI
UNIVERSITY OF MARYLAND AND RIKEN FELLOW

LECTURE I:

LATTICE QCD FORMALISM AND METHODOLOGY

LECTURE II:
 NUCLEON STRUCTURE FROM LATTICE QCD

LECTURE III:
TOWARDS NUCLEAR STRUCTURE FROM LATTICE QCD

LECTURE I:

LATTICE QCD FORMALISM AND METHODOLOGY

Quantum chromodynamics (QCD) in continuum:

QCD is a $S U(3)$ Yang-Mills theory augmented with several flavors of massive quarks:

$$
\begin{aligned}
\text { Quark kinetic and mass term } & \text { Quark/gluon interactions } \\
\mathcal{L}_{Q C D}= & \sum_{f=1}^{N_{f}}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] \\
& -\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{g}{2} f_{i j k} F_{\mu \nu}^{i} A^{i \mu} A^{j \nu}-\frac{g^{2}}{4} f_{i j k} f_{k l m} A_{\mu}^{j} A_{\nu}^{k} A^{l \mu} A^{m \nu}
\end{aligned}
$$

Quantum chromodynamics (QCD) in continuum:

QCD is a $\operatorname{SU}(3)$ Yang-Mills theory augmented with several flavors of massive quarks:

$$
\begin{aligned}
\text { Quark kinetic and mass term } & \text { Quark/gluon interactions } \\
\mathcal{L}_{Q C D}= & \sum_{f=1}^{N_{f}}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] \\
& -\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{g}{2} f_{i j k} F_{\mu \nu}^{i} A^{i \mu} A^{j \nu}-\frac{g^{2}}{4} f_{i j k} f_{k l m} A_{\mu}^{j} A_{\nu}^{k} A^{l \mu} A^{m \nu}
\end{aligned}
$$

Gluons kinetic and interaction terms

Observe that:

i) There are only $1+N_{f}$ input parameters plus QCD coupling. Fix them by a few quantities and all strongly-interacting aspects of nuclear physics is predicted (in principle)!
ii) QCD is asymptotically free such that: $\alpha_{s}\left(\mu^{\prime}\right)=\frac{1}{2 b_{0} \log \frac{\mu^{\prime}}{\Lambda_{Q C D}}}$

Quantum chromodynamics (QCD) in continuum:

QCD is a $S U(3)$ Yang-Mills theory augmented with several flavors of massive quarks:

$$
\mathcal{L}_{Q C D}=\sum_{f=1}^{\text {Quark kinetic and mass term }}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] .
$$

Gluons kinetic and interaction terms

Let's enumerate the steps toward numerically simulating this theory nonperturbatively...

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quark fields. Need to specify the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, decay rates, etc.

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

$$
T, L \gg m_{\pi}^{-1} \quad a \ll \Lambda_{Q C D}^{-1}
$$

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

$$
T, L \gg m_{\pi}^{-1} \quad a \ll \Lambda_{Q C D}^{-1}
$$

An example of a discretized action by K. Wilson:

$$
\begin{aligned}
= & 2 / g^{2} \\
S_{\text {Wilson }}^{(E)} & \left.=\frac{\beta}{N_{c}} \sum_{n} \sum_{\mu<\nu} \Re \operatorname{Tr}\left[\mathbb{1}-P_{\mu \nu ; n}\right] \quad \begin{array}{l}
\quad \begin{array}{l}
\text { Wilson parameter. Gives the naive action if set } \\
\text { to zero and has doublers problem. }
\end{array} \\
\\
\end{array} \begin{array}{l}
-\sum_{n} \bar{q}_{n}\left[\bar{m}^{(0)}+4\right] q_{n}+\sum_{n} \sum_{\mu}\left[\bar{q}_{n} \frac{r-\gamma_{\mu}}{2} U_{\mu}(n) q_{n+\hat{\mu}}+\bar{q}_{n} \frac{r+\gamma_{\mu}}{2} U_{\mu}^{\dagger}(n-\hat{\mu}) q_{n-\hat{\mu}}\right.
\end{array}\right]
\end{aligned}
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Quark part of expectation values

$$
\begin{aligned}
\text { Define: }\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\mathcal{Z}_{F}=\int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{[(F)}[U, q, \bar{q}]}=\prod_{f} \operatorname{det} D_{f} \quad \text { Dirac matrix }
\end{aligned}
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Quark part of expectation values

$$
\begin{gathered}
\text { Define: }\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\mathcal{Z}_{F}=\int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{[F]}[U, q, \bar{q}]}=\prod_{f} \operatorname{det} D_{f} \quad \text { Dirac matrix }
\end{gathered}
$$

$$
\sqrt{7}
$$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} e^{-S_{\text {lattice }}^{(G)}[U]} \mathcal{Z}_{F}[U]\langle\hat{\mathcal{O}}\rangle_{F}
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Quark part of expectation values

$$
\text { Define: }\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U]
$$

$$
\mathcal{Z}_{F}=\int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]}=\prod_{f} \operatorname{det} D_{f} \quad \text { Dirac matrix }
$$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} e^{-S_{\text {latitioe }}^{[(U)} \mathcal{Z}_{F}[U]}\left\langle\hat{\hat{O}_{F}}\right.
$$

$$
\sqrt{0}
$$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{N} \sum_{i}^{N}\langle\hat{\mathcal{O}}\rangle_{F}\left[U^{(i)}\right]
$$

N number of $U^{(i)}$ sampled from the distribution: $\frac{1}{\mathcal{Z}} e^{-S_{\text {lattice }}^{(G)}[U]} \prod_{f} \operatorname{det} D_{f}$

Steps II is computationally costly...
Example: Consider a lattice with: $L / a=48, T / a=256$
Sampling SU(3) matrices. Already for one sample requires storing

$$
8 \times 48^{3} \times 256=226,492,416
$$

c-numbers in the computer!
Requires calculating determinant of a large matrix.
Requires tens of thousands of uncorrelated samples. Molecular-dynamics-inspired hybrid Monte Carlo sampling algorithms often used.

Step III: Form the correlation functions by contracting the quarks. Need to specify the interpolating operators for the state under study.

$$
\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U]
$$

Step III: Form the correlation functions by contracting the quarks. Need to specify the interpolating operators for the state under study.

$$
\begin{gathered}
\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {latatice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\checkmark
\end{gathered}
$$

$$
\text { e.g., } \hat{O}=\bar{u} \gamma_{5} d
$$

Step III: Form the correlation functions by contracting the quarks. Need to specify the interpolating operators for the state under study.

$$
\begin{gathered}
\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D}_{q} \mathcal{D} \overline{\tilde{D}} e^{-\int_{\text {latucece }}^{[(T)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\Omega
\end{gathered}
$$

$$
\text { e.g., } \hat{O}=\bar{u} \gamma_{5} d
$$

$$
\text { e.g., } \hat{O}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma^{5} u-\bar{d} \gamma^{5} d\right)
$$

Quark disconnected diagrams. Require expensive all-to-all propagators.

Steps III is computationally costly...
Example: Consider a lattice with: $L / a=48, T / a=256$
Solving

$$
[D(U)]_{X, Y}[S(U)]_{Y, X_{0}}=G_{X, X_{0}}
$$

Dirac
matrix

Quark propagator

Requires taking determinant and inverting a matrix with dimensions:

$$
\begin{gathered}
\left(4 \times 3 \times 48^{3} \times 256\right)^{2}= \\
339,738,624 \times 339,738,624
\end{gathered}
$$

EXERCISE 1

Show that for the correlation function of the charged pion:

$$
\left\langle\hat{O}^{\pi^{+}}(n) \hat{O}^{\pi^{+} \dagger}(0)\right\rangle_{F}=-\operatorname{Tr}\left[D_{u}^{-1}(n, 0) D_{d}^{-1}(n, 0)\right]
$$

where D_{u}^{-1} and D_{d}^{-1} denote the the inverse Dirac matrix (the quark propagator) for the u and d quarks, respectively. Trace is over spin and color degrees of freedom.

BONUS EXERCISE 1

Show that for the correlation function of the neutral pion:

$$
\begin{aligned}
\left\langle\hat{O}^{\pi^{0}}(n) \hat{O}^{\pi^{0} \dagger}(0)\right\rangle_{F}= & -\frac{1}{2} \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(n, 0) \gamma^{5} D_{u}^{-1}(0, n)\right] \\
& +\frac{1}{2} \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(n, n)\right] \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(0,0)\right] \\
& -\frac{1}{2} \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(n, n)\right] \operatorname{Tr}\left[\gamma^{5} D_{d}^{-1}(0,0)\right]+\{u \leftrightarrow d\}
\end{aligned}
$$

Step IV: Extract energies and matrix elements from correlation functions

$$
C_{\hat{\mathcal{O}}, \hat{\mathcal{O}}^{\prime}}(\tau ; \mathbf{d})=\sum_{\mathbf{x}} e^{2 \pi i \mathbf{d} \cdot \mathbf{x} / L}\langle 0| \hat{\mathcal{O}}^{\prime}(\mathbf{x}, \tau) \hat{\mathcal{O}}^{\dagger}(\mathbf{0}, 0)|0\rangle=\mathcal{Z}_{0}^{\prime} \mathcal{Z}_{0}^{\dagger} e^{-E^{(0)} \tau}+\mathcal{Z}_{1}^{\prime} \mathcal{Z}_{1}^{\dagger} e^{-E^{(1)} \tau}+\ldots
$$

Ground state and a tower of excited states are, in principle, accessible!

Step IV: Extract energies and matrix elements from correlation functions

$$
C_{\hat{\mathcal{O}}, \mathcal{O}^{\prime}}(\tau ; \mathbf{d})=\sum_{\mathbf{x}} e^{2 \pi i \mathbf{d} \cdot \mathbf{x} / L}\langle 0| \hat{\mathcal{O}}^{\prime}(\mathbf{x}, \tau) \hat{\mathcal{O}}^{\dagger}(\mathbf{0}, 0)|0\rangle=\mathcal{Z}_{0}^{\prime} \mathcal{Z}_{0}^{\dagger} e^{-E^{(0)} \tau}+\mathcal{Z}_{1}^{\prime} \mathcal{Z}_{1}^{\dagger} e^{-E^{(1)} \tau}+\ldots
$$

Ground state and a tower of excited states are, in principle, accessible!

Example: $N N\left({ }^{1} S_{0}\right)$

【 $24^{3} \times 48 \quad$ 【 $32^{3} \times 48$

What should we make of the volume dependence?

[STILL CONTINUING ON] LECTURE I:

 LATTICE QCD FORMALISM AND METHODOLOGY
[Recap] Steps involved in any lattice QCD calculation:

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quark fields. Need to specify the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, decay rates, etc.

Step V: Make the connection to physical observables, such as scattering amplitudes, decay rates, etc. Still not fully developed and presents challenge in multi-hadron systems.

Example: two-hadron scattering

Let's discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, decay rates, etc.
i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron inelastic scattering and resonances
iv) Finite-volume formalism for transition amplitudes and resonance form factors
v) Finite-volume formalism for three-hadron scattering and resonances and decays
vi) Finite-volume effects in lattice QED+QCD studies of hadrons

Let's discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, decay rates, etc.
i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron inelastic scattering and resonances
iv) Finite-volume formalism for transition amplitudes and resonance form factors
v) Finite-volume formalism for three-hadron scattering and resonances and decays
vi) Finite-volume effects in lattice QED+QCD studies of hadrons

Let's discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, decay rates, etc.
i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron inelastic scattering and resonances
iv) Finite-volume formalism for transition amplitudes and resonance form factors
v) Finite-volume formalism for three-hadron scattering and resonances and decays
vi) Finite-volume effects in lattice QED+QCD studies of hadrons

```
See e.g., ZD, arXiv:1409.1966 [hep-lat, Briceno, Dudek and Young,
Rev. Mod. Phys. 90.025001, Ann. Rev. Nucl. Part. Sci. 69 (2019).
```

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

Kim, Sachrajda and Sharpe, Nucl. Phys.B727(2005)218-243.

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

$$
T \rightarrow \infty, a \rightarrow 0
$$

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

$$
T \rightarrow \infty, a \rightarrow 0
$$

(1)

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

$$
T \rightarrow \infty, a \rightarrow 0
$$

(1)

(2)

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

(1)

(2)

EXERCISE 2

By rearranging the diagrams in C_{V} (the first line in the upper panel) using the relations in the lower panel, verify the expansion in the second line in the upper panel. What is the relation between $\sigma\left(\sigma^{\prime}\right)$ and $A\left(A^{\prime}\right)$?

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

(1)

(2)

Let's derive the Luescher's formula first. A QFT derivation goes as follows:

$$
\operatorname{det}\left[\delta \mathcal{G}^{V}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

Poles of C_{V} which are the finite-volume CM energy eigenvalues.

$$
\operatorname{det}\left[\delta \mathcal{G}^{V}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

$$
\operatorname{det}\left[\delta \mathcal{G}^{V}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

Elastic amplitude more closely...

$$
\begin{array}{r}
(\mathcal{M})_{l_{1}, m_{1} ; l_{2}, m_{2}}=\underset{\substack{\text { CM energy } \\
\delta_{l_{1}, l_{2}} \delta_{m_{1}, m_{2}} \frac{8 \pi E^{*}}{n q^{*}} \frac{e^{2 i \delta^{(l)}\left(q^{*}\right)}-1}{2 i} \\
q^{* 2}=}}{\frac{1}{4}\left(E^{* 2}-2\left(m_{1}^{2}+m_{2}^{2}\right)+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{E^{* 2}}\right)}
\end{array}
$$

$$
\operatorname{det}\left[\delta \mathcal{G}^{V}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

$$
\operatorname{det}\left[\delta \mathcal{G}^{\bigvee}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

Finite-volume function more closely...

$$
\begin{aligned}
\left(\delta \mathcal{G}^{V}\right)_{l_{1}, m_{1} ; l_{2}, m_{2}}=i \frac{q^{*} n}{8 \pi E^{*}}\left(\delta_{l_{1}, l_{2}} \delta_{m_{1}, m_{2}}+i \frac{4 \pi}{q^{*}} \sum_{l, m} \frac{\sqrt{4 \pi}}{q^{* l}} c_{l m}^{\mathrm{P}}\left(q^{* 2}\right) \int d \Omega^{*} Y_{l_{1} m_{1}}^{*} Y_{l m}^{*} Y_{l_{2} m_{2}}\right) \\
\downarrow
\end{aligned} c_{l m}^{\mathrm{P}}(x)=\frac{1}{\gamma}\left[\frac{1}{L^{3}} \sum_{\mathbf{k}}-\mathcal{P} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\right] \frac{\sqrt{4 \pi} Y_{l m}\left(\hat{k}^{*}\right) k^{* l}}{k^{* 2}-x} . \begin{aligned}
& \downarrow
\end{aligned}
$$

$$
\operatorname{det}\left[\delta \mathcal{G}^{V}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

$$
\operatorname{det}\left[\delta \mathcal{G}^{V}\left(E^{*}\right)+\mathcal{M}_{\infty}^{-1}\left(E^{*}\right)\right]=0
$$

S-wave approximation,
valid at low energies: valid at low energies:

$$
q^{*} \cot \delta^{(0)}=4 \pi c_{00}^{0}\left(q^{* 2}\right)
$$

S-wave phase shift

EXERCISE 3

Derive the S-wave limit of Luescher's quantization condition from the master relation.

BONUS EXERCISE 2

Plot the S-wave finite-volume function c_{00}^{0} for a range of momenta $q^{* 2}$, including negative values. At what values of $q^{* 2}$ do you observe singularities? What do these momenta correspond to?

Now let's see an application of Luescher's method to obtain elastic scattering amplitudes of two nucleon from lattice QCD (at a large quark mass!):

Step 1: Obtain the lowest-lying spectra

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

Step 1: Obtain the lowest-lying spectra

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

Step 1: Obtain the lowest-lying spectra

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Step 2: Feed the energies to the Luescher's equation and obtain the S -wave scattering phase shifts.

$$
q^{*} \cot \delta^{(0)}=4 \pi c_{00}^{0}\left(q^{* 2}\right)
$$

S-wave phase shift

Step 2: Feed the energies to the Luescher's equation and obtain the S -wave scattering phase shifts.

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

$$
q^{*} \cot \delta^{(0)}=-\frac{1}{a}+\frac{1}{2} r q^{* 2}+\cdots
$$

OOO	$\mathbf{d}=(0,0,0)$
ㅁㅁㅁ	$d=(0,0,2)$

$24^{3} \times 48:$ stat. 68% C.I.
$32^{3} \times 48:$ stat. 68% C.I.
$48^{3} \times 64:$ stat. 68% C.I.
$24^{3} \times 48:$ stat. + syst. 68% C.I.
$32^{3} \times 48:$ stat. + syst. 68% C.I.
$\longmapsto 48^{3} \times 64:$ stat. + syst. 68% C.I.
........ $-\sqrt{-q^{* 2}}$

| Two-parameter ERE: stat. |
| :--- | :--- |
| Two-parameter ERE: stat.+syst. |
| Three-parameter ERE: stat. |
| Three-parameter ERE: stat.+syst. |

$$
B=27.9_{(-2.3)(-1.4)}^{(+3.1)(+2.2)} \mathrm{MeV}
$$

Let's discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, decay rates, etc.
i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron elastic scattering and resonances
iv) Finite-volume formalism for transition amplitudes and resonance form factors
v) Finite-volume formalism for three-hadron scattering and resonances
vi) Finite-volume effects in lattice QED+QCD studies of hadrons

```
See e.g., ZD, arXiv:1409.1966 [hep-lat, Briceno, Dudek and Young,
Rev. Mod. Phys. 90.025001, Ann. Rev. Nucl. Part. Sci. 69 (2019).
```


Now let's see an application of the coupled-channel formalism: Hunting resonances using lattice QCD in the P-wave coupled $\pi \pi-K \bar{K}$ channel

Now let's see an application of the coupled-channel formalism: Hunting resonances using lattice QCD in the P-wave coupled $\pi \pi-K \bar{K}$ channel

Example: T1 irrep
energies
$N_{f}=2+1, m_{\pi}=236 \mathrm{MeV}, V \approx(4 \mathrm{fm})^{3}$

Example: T1 irrep energies

$N_{f}=2+1, m_{\pi}=236 \mathrm{MeV}, V \approx(4 \mathrm{fm})^{3}$

Example: T1 irrep energies

Fit to a Breit-Wigner form

$$
\mathcal{M}(s)=\frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma(s)}{m_{R}^{2}-s-i \sqrt{s} \Gamma(s)}
$$

$$
\begin{aligned}
& \rho_{i}\left(E_{\mathrm{cm}}\right)=2 k_{i} / E_{\mathrm{cm}} \\
& s=E_{\mathrm{cm}}^{2} \\
& \Gamma(s)=\frac{g_{R}^{2}}{6 \pi} \frac{k^{3}}{s}
\end{aligned}
$$

$N_{f}=2+1, m_{\pi}=236 \mathrm{MeV}, V \approx(4 \mathrm{fm})^{3}$

```
Wilson et al.(HadSpec),
Phys.Rev. D92 (2015), 094502
```

Using a range of parametrizations:
Pole position:
All three scattering parameters:

SUMMARY OF LECTURE I

Lattice QCD workflow

GENERATE A SAMPLE OF VACUUM CONFIGURATIONS	COMPUTE EUCLIDEAN CORRELATION FUNCTIONS	ANALYZE CORRELATION FUNCTIONS: NUMERICS AND ANALYTICAL WORK
- Hybrid Monte Carlo to sample gauge configurations - Determinant of a highdimensional matrix required	- Quark contractions - Inverting a high-dimensional matrix required (to get the quark propagators)	- Assess stat. and sys. uncertainties (take the continuum and infinitevolume limits) - Connect to physical observables

LECTURE II: NUCLEON STRUCTURE FROM LATTICE QCD...

LECTURE II:

NUCLEON STRUCTURE FROM LATTICE QCD

Let's enumerate some of the methods that give access to structure quantities in general:

Three(four)-point functions

For e.g., form factors, moments of structure functions, Compton amplitude, transition amplitudes

Background-field methods

For e.g., EM moments and polarizabilities, charge radius, form factors and transition amplitudes.

Feynman-Hellmann inspired methods

Similar to background fields. For e.g., axial charge, form factors, EM moments, transition amplitudes

Let's enumerate some of the methods that give access to structure quantities in general:

A three-point (3pt) function:

$$
C_{\widetilde{\chi} \mathcal{O} \chi}\left(x^{\prime}, y, x\right) \equiv\left\langle\chi\left(x^{\prime}\right) \mathcal{O}(y) \widetilde{\chi}(x)\right\rangle
$$

A three-point (3pt) function:

$$
C_{\widetilde{\chi} \mathcal{O} \chi}\left(x^{\prime}, y, x\right) \equiv\left\langle\chi\left(x^{\prime}\right) \mathcal{O}(y) \widetilde{\chi}(x)\right\rangle
$$

Insert the
Create the state
Annihilate the state operator

Spectral decomposition of the 3 pt function in Euclidean spacetime

$$
\begin{aligned}
G_{\chi \mathcal{O} \tilde{\chi}}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t^{\prime}, \tau, t\right)= & \sum_{\mathrm{X}, \mathrm{Y}} \frac{e^{-E_{\mathrm{X}}\left(\mathbf{p}^{\prime}\right)\left(t^{\prime}-\tau\right)}}{2 E_{\mathrm{X}}\left(\mathbf{p}^{\prime}\right)} \frac{e^{-E_{\mathrm{Y}}(\mathbf{p})(\tau-t)}}{2 E_{\mathrm{Y}}(\mathbf{p})} \\
& \langle\Omega| \chi(0)\left|\mathrm{X}\left(\mathbf{p}^{\prime}\right)\right\rangle\left\langle\mathrm{X}\left(\mathbf{p}^{\prime}\right)\right| \mathcal{O}(0)|\mathrm{Y}(\mathbf{p})\rangle\langle\mathrm{Y}(\mathbf{p})| \widetilde{\chi}(0)|\Omega\rangle
\end{aligned}
$$

A complete set of states
Another complete set of states

$$
\text { A three-point (3pt) } \quad C_{\widetilde{\chi} \mathcal{O} \chi}\left(x^{\prime}, y, x\right) \equiv\left\langle\chi\left(x^{\prime}\right) \mathcal{O}(y) \widetilde{\chi}(x)\right\rangle
$$

Spectral decomposition of the 3 pt function in Euclidean spacetime

$$
G_{\chi \mathcal{O} \tilde{\chi}}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t^{\prime}, \tau, t\right)=\sum_{\mathrm{X}, \mathrm{Y}} \frac{e^{-E_{\mathrm{X}}\left(\mathbf{p}^{\prime}\right)\left(t^{\prime}-\tau\right)}}{2 E_{\mathrm{X}}\left(\mathbf{p}^{\prime}\right)} \frac{e^{-E_{\mathrm{Y}}(\mathbf{p})(\tau-t)}}{2 E_{\mathrm{Y}}(\mathbf{p})}
$$

$$
\langle\Omega| \chi(0)\left|\mathrm{X}\left(\mathbf{p}^{\prime}\right)\right\rangle\left\langle\mathrm{X}\left(\mathbf{p}^{\prime}\right)\right| \mathcal{O}(0)|\mathrm{Y}(\mathbf{p})\rangle\langle\mathrm{Y}(\mathbf{p})| \widetilde{\chi}(0)|\Omega\rangle
$$

Long-separation behavior dominated by ground states

$$
\begin{aligned}
& G_{\chi \mathcal{O} \tilde{\chi}}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t^{\prime}, \tau, t\right) \xrightarrow{\text { large } t^{\prime}-\tau, \tau-t} \frac{e^{-E_{\mathrm{X}_{0}}\left(\mathbf{p}^{\prime}\right)\left(t^{\prime}-\tau\right)}}{2 E_{\mathrm{X}_{0}}\left(\mathbf{p}^{\prime}\right)} \frac{e^{-E_{\mathrm{X}_{0}}(\mathbf{p})(\tau-t)}}{2 E_{\mathrm{X}_{0}}(\mathbf{p})} \\
& \quad \sum_{r^{\prime}, r}\langle\Omega| \chi(0)\left|\mathrm{X}_{0}\left(\mathbf{p}^{\prime}, r^{\prime}\right)\right\rangle\left\langle\mathrm{X}_{0}\left(\mathbf{p}^{\prime}, r^{\prime}\right)\right| \mathcal{O}(0)\left|\mathrm{X}_{0}(\mathbf{p}, r)\right\rangle\left\langle\mathrm{X}_{0}(\mathbf{p}, r)\right| \widetilde{\chi}(0)|\Omega\rangle
\end{aligned}
$$

If there are degenerate ground states

Desired ground state to ground state matrix element (unrenormalized and in a finite volume)

$$
\text { A three-point (3pt) } \quad C_{\widetilde{\chi} \mathcal{O} \chi}\left(x^{\prime}, y, x\right) \equiv\left\langle\chi\left(x^{\prime}\right) \mathcal{O}(y) \widetilde{\chi}(x)\right\rangle
$$

Spectral decomposition of the 3 pt function in Euclidean spacetime

$$
G_{\chi \mathcal{O} \tilde{\chi}}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t^{\prime}, \tau, t\right)=\sum_{\mathrm{X}, \mathrm{Y}} \frac{e^{-E_{\mathrm{X}}\left(\mathbf{p}^{\prime}\right)\left(t^{\prime}-\tau\right)}}{2 E_{\mathrm{X}}\left(\mathbf{p}^{\prime}\right)} \frac{e^{-E_{\mathrm{Y}}(\mathbf{p})(\tau-t)}}{2 E_{\mathrm{Y}}(\mathbf{p})}
$$

$$
\langle\Omega| \chi(0)\left|\mathrm{X}\left(\mathbf{p}^{\prime}\right)\right\rangle\left\langle\mathrm{X}\left(\mathbf{p}^{\prime}\right)\right| \mathcal{O}(0)|\mathrm{Y}(\mathbf{p})\rangle\langle\mathrm{Y}(\mathbf{p})| \widetilde{\chi}(0)|\Omega\rangle
$$

Long-separation behavior dominated by ground states

$$
\begin{aligned}
& G_{\chi \mathcal{O} \widetilde{\chi}}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t^{\prime}, \tau, t\right) \xrightarrow{\text { large } t^{\prime}-\tau, \tau-t} \frac{e^{-E_{\mathrm{X}_{0}}\left(\mathbf{p}^{\prime}\right)\left(t^{\prime}-\tau\right)}}{2 E_{\mathrm{X}_{0}}\left(\mathbf{p}^{\prime}\right)} \frac{e^{-E_{\mathrm{X}_{0}}(\mathbf{p})(\tau-t)}}{2 E_{\mathrm{X}_{0}}(\mathbf{p})} \\
& \quad \sum_{r^{\prime}, r}\langle\Omega| \chi(0)\left|\mathrm{X}_{0}\left(\mathbf{p}^{\prime}, r^{\prime}\right)\right\rangle\left\langle\mathrm{X}_{0}\left(\mathbf{p}^{\prime}, r^{\prime}\right)\right| \mathcal{O}(0)\left|\mathrm{X}_{0}(\mathbf{p}, r)\right\rangle\left\langle\mathrm{X}_{0}(\mathbf{p}, r)\right| \widetilde{\chi}(0)|\Omega\rangle
\end{aligned}
$$

Desired ground state to ground state matrix element (unrenormalized and in a finite volume)

Taking a proper ratio to 2 pt functions

$$
R_{\chi \mathcal{O}}\left(\mathbf{p}^{\prime}, \mathbf{p} ; t^{\prime}, \tau, t\right) \stackrel{\text { large } t^{\prime}-\tau, \tau-t}{\propto}\left\langle\mathrm{X}_{0}\left(\mathbf{p}^{\prime}, r^{\prime}\right)\right| \mathcal{O}(0)\left|\mathrm{X}_{0}(\mathbf{p}, r)\right\rangle
$$

EXERCISE 4

If the computational resources do not allow large source, operator and sink time separations to be achieved, one should worry about the effect of excited states. One way to have more confidence over the extracted ground state to ground state matrix element is to perform a multi-exponential fits to the ratio of 3 pt to 2 pt functions as a function of both the source-sink and the source-operator separations. Assume that both the ground state and the first excited states contribute significantly to such a ratio. Write down a generic form for such a multi-exponential function.

BONUS EXERCISE 3

In the above exercise, sum over the time insertions of the operator and write down a new form for the ratio of 3 pt to 2 pt functions, which now is only a function of the source-sink time separation. This is referred to as the summation method in literature.

Example: The application of 3pt function method to obtain the axial charge/form factors of the nucleon

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)|N(p, s)\rangle=i\left(\frac{m_{N}^{2}}{E_{N}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[G_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+\frac{q_{\mu} \gamma_{5}}{2 m_{N}} G_{p}\left(q^{2}\right)\right] u_{N}(p, s)
$$

Axial-vector current

Axial and pseudo scalar form factors

$$
G_{A}(0)=g_{A}
$$

Example: The application of 3pt function method to obtain the axial charge/form factors of the nucleon

$$
\begin{gathered}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)|N(p, s)\rangle=i\left(\frac{m_{N}^{2}}{E_{N}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[G_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+\frac{q_{\mu} \gamma_{5}}{2 m_{N}} G_{p}\left(q^{2}\right)\right] u_{N}(p, s) \\
\text { Axial-vector current } \\
\text { Nucleon spinor } \\
\text { Axial and pseudo scalar form factors } \\
G_{A}(0)=g_{A}
\end{gathered}
$$

Connected contribution

Disconnected contribution (vanishes at isospin limit for isovector quantities)

Example: The application of 3 pt function method to obtain the axial charge/form factors of the nucleon

```
Gupta et al (PNDME), Phys. Rev. D 98, 034503 (2018)
```


Example: The application of 3 pt function method to obtain the axial charge/form factors of the nucleon

Gupta et al (PNDME), Phys. Rev. D 98, 034503 (2018)

3 pt function for a single lattice spacing, volume and quark masses

Extrapolation to continuum, infinite volume and physical quark masses

Example: The application of 3 pt function method to obtain the axial charge/form factors of the nucleon

Gupta et al (PNDME), Phys. Rev. D 98, 034503 (2018)

Example: The application of 3 pt function method to obtain the axial charge/form factors of the nucleon

Gupta et al (PNDME), Phys. Rev. D 98, 034503 (2018)

```
Jang et al, EPJ Web Conf. 175, 06033 (2018)
```


Example: The spin decomposition of the nucleon

```
Alexandru, Phys. Rev. Lett. 119, 142002 (2017).
```

$$
J_{N}=\sum_{q=u, d, s, c \cdots}\left(\frac{1}{2} \Delta \Sigma_{q}+L_{q}\right)+J_{g}
$$

Ji, Phys. Rev. Lett. 78, 610 (1997).
Quark spin

Quark orbital angular momentum

Total gluon angular momentum

Example: The spin decomposition of the nucleon

```
Alexandru, Phys. Rev. Lett. 119, 142002 (2017).
```

$$
J_{N}=\sum_{q=u, d, s, c \cdots}\left(\frac{1}{2} \Delta \Sigma_{q}+L_{q}\right)+J_{g}
$$

Ji, Phys. Rev. Lett. 78, 610 (1997).

Quark spin

Quark orbital angular momentum

Total gluon angular momentum

Matrix elements needed

$$
\left\langle N\left(p, s^{\prime}\right)\right| \mathcal{O}_{A}^{\mu}|N(p, s)\rangle=\bar{u}_{N}\left(p, s^{\prime}\right)\left[g_{A}^{q} \gamma^{\mu} \gamma_{5}\right] u_{N}(p, s)
$$

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \Lambda_{\mu \nu}^{q}\left(Q^{2}\right) u_{N}(p, s)
$$

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{g}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \Lambda_{\mu \nu}^{g}\left(Q^{2}\right) u_{N}(p, s)
$$

$$
\mathcal{O}_{A}^{\mu}=\bar{q} \gamma_{\mu} \gamma_{5} q
$$

With $\left.\quad \mathcal{O}_{V}^{\mu \nu}=\bar{q} \gamma^{\{\mu} \overleftrightarrow{D}^{\nu}\right\}_{q}$ operators

$$
\mathcal{O}_{g}^{\mu \nu}=2 \operatorname{Tr}\left[G_{\mu \sigma} G_{\nu \sigma}\right]
$$

Quark contributions

Example: The spin decomposition of the nucleon

```
Alexandru, Phys. Rev. Lett. 119, 142002 (2017).
```


Quark spin contributions

Nucleon spin decomposition

Longitudinal momentum decomposition
[STILL CONTINUING ON] LECTURE II: NUCLEON STRUCTURE FROM LATTICE QCD

Let's enumerate a some of the methods that give access to structure quantities in general:

Three(four)-point functions

For e.g., form factors, moments of structure functions, Compton amplitude, transition amplitudes

Background-field methods

For e.g., EM moments and polarizabilities, charge radius, form factors and transition amplitudes.

Feynman-Hellmann inspired methods

Similar to background fields. For e.g., axial charge, form factors, EM moments, transition amplitudes

Background fields are non-dynamical, i.e., there will be no pair creation and annihilation in vacuum with a classical EM background field. This mean the photon zero mode is no problem: it is absent in the calculation!

$$
U^{(\mathrm{QCD})} \rightarrow U^{(\mathrm{QCD})} \times U^{(\mathrm{QED})}
$$

Modify the links when forming the quark propagators (quench approx).

Background fields are non-dynamical, i.e., there will be no pair creation and annihilation in vacuum with a classical EM background field. This mean the photon zero mode is no problem: it is absent in the calculation!

$$
U^{(\mathrm{QCD})} \rightarrow U^{(\mathrm{QCD})} \times U^{(\mathrm{QED})}
$$

Modify the links when forming the quark propagators (quench approx).

Traditionally they are used for constraining the response of hadrons/nuclei to external probes:

Electric and magnetic polarizabilities
Magnetic moments

See e.g., BEANE et al (NPLQCD), Phys.Rev.Lett. 113 (2014) 25, 252001 and Phys.Rev. D92 (2015) 11, 114502. for nuclear-physics calculations.

Various other structure properties of hadrons and nuclei, as well as their transitions, can be studied using more complex background fields:

1) EM charge radius
```
ZD and
Detmold,
Phys. Rev.
D 93,
014509
(2016).
```


2) Electric quadrupole moment

```
ZD and Detmold, Phys. Rev. D 93, 014509 (2016).
```


4) Axial background fields

```
Beane at al, Phys.Rev. Lett, 115 132001 (2015).
```


Here's an application of the background-field technique to obtain magnetic moment and polarizabilities of the nucleon:

$$
E_{h ; j_{z}}(\mathbf{B})=\sqrt{M_{h}^{2}+P_{\|}^{2}+\left(2 n_{L}+1\right)\left|Q_{h} e \mathbf{B}\right|}-\boldsymbol{\mu}_{h} \cdot \mathbf{B}-2 \pi \beta_{h}^{(M 0)}|\mathbf{B}|^{2}-2 \pi \beta_{h}^{(M 2)}\left\langle\hat{T}_{i j} B_{i} B_{j}\right\rangle+\ldots
$$

Landau levels for charged particles

Magnetic moment

Magnetic polarizabilities

Here's an application of the background-field technique to obtain magnetic moment and polarizabilities of the nucleon:

$$
E_{h ; j_{z}}(\mathbf{B})=\sqrt{M_{h}^{2}+P_{\|}^{2}+\left(2 n_{L}+1\right)\left|Q_{h} e \mathbf{B}\right|}-\boldsymbol{\mu}_{h} \cdot \mathbf{B}-2 \pi \beta_{h}^{(M 0)}|\mathbf{B}|^{2}-2 \pi \beta_{h}^{(M 2)}\left\langle\hat{T}_{i j} B_{i} B_{j}\right\rangle+\ldots
$$

Landau levels for charged particles

Magnetic moment

Magnetic polarizabilities

A quanta of magnetic field
$N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}$

Light nuclei

Here's an application of the background-field technique to obtain magnetic moment and polarizabilities of the nucleon:

$$
E_{h ; j_{z}}(\mathbf{B})=\sqrt{M_{h}^{2}+P_{\|}^{2}+\left(2 n_{L}+1\right)\left|Q_{h} e \mathbf{B}\right|}-\boldsymbol{\mu}_{h} \cdot \mathbf{B}-2 \pi \beta_{h}^{(M 0)}|\mathbf{B}|^{2}-2 \pi \beta_{h}^{(M 2)}\left\langle\hat{T}_{i j} B_{i} B_{j}\right\rangle+\ldots
$$

Landau levels for charged particles

Magnetic moment

Magnetic polarizabilities

Magnetic moment

$N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}$

Here's an application of the background-field technique to obtain magnetic moment and polarizabilities of the nucleon:

$$
E_{h ; j_{z}}(\mathbf{B})=\sqrt{M_{h}^{2}+P_{\|}^{2}+\left(2 n_{L}+1\right)\left|Q_{h} e \mathbf{B}\right|}-\boldsymbol{\mu}_{h} \cdot \mathbf{B}-2 \pi \beta_{h}^{(M 0)}|\mathbf{B}|^{2}-2 \pi \beta_{h}^{(M 2)}\left\langle\hat{T}_{i j} B_{i} B_{j}\right\rangle+\ldots
$$

Landau levels for charged particles

Magnetic moment

Magnetic polarizabilities

Magnetic moment

Magnetic polarizability

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

Let's enumerate a some of the methods that give access to structure quantities in general:

Three(four)-point functions

For e.g., form factors, moments of structure functions, Compton amplitude, transition amplitudes

Background-field methods

For e.g., EM moments and polarizabilities, charge radius, form factors and transition amplitudes.

Feynman-Hellmann inspired methods

Similar to background fields. For e.g., axial charge, form factors, EM moments, transition amplitudes

Hamiltonian as a function of a variable parameter

$$
\hat{H}(\lambda)=\hat{H}+\lambda \hat{V}
$$

Energy eigenvalue

$$
\frac{\mathrm{d} E_{n}}{\mathrm{~d} \lambda}=\frac{\left\langle\psi_{n}\right| \frac{\mathrm{d} \hat{H}}{\mathrm{~d} \lambda}\left|\psi_{n}\right\rangle}{\left\langle\psi_{n} \mid \psi_{n}\right\rangle} \quad \text { Energy eigenstate }
$$

Example: sigma term

$$
\left.m_{q} \frac{\partial m_{N}}{\partial m_{q}}\right|_{m_{q}=m_{q}^{\text {phy }}}=\langle\mathcal{N}| m_{q} \bar{q} q|\mathcal{N}\rangle
$$

Hamiltonian as a
function of a
variable parameter

$$
\hat{H}(\lambda)=\hat{H}+\lambda \hat{V}
$$

Energy eigenvalue

$$
\frac{\mathrm{d} E_{n}}{\mathrm{~d} \lambda}=\frac{\left\langle\psi_{n}\right| \frac{\mathrm{d} \hat{H}}{\mathrm{~d} \lambda}\left|\psi_{n}\right\rangle}{\left\langle\psi_{n} \mid \psi_{n}\right\rangle} \quad \text { Energy eigenstate }
$$

Example: sigma term

$$
\left.m_{q} \frac{\partial m_{N}}{\partial m_{q}}\right|_{m_{q}=m_{q}^{\text {phy }}}=\langle\mathcal{N}| m_{q} \bar{q} q|\mathcal{N}\rangle
$$

Generalization to correlation functions

$$
\begin{aligned}
C_{\lambda}(t)= & \langle\lambda| \mathcal{O}(t) \mathcal{O}^{\dagger}(0)|\lambda\rangle=\frac{1}{\mathcal{Z}_{\lambda}} \int D \Phi e^{-S-S_{\lambda}} \mathcal{O}(t) \mathcal{O}^{\dagger}(0) \\
& \text { Just a 2pt function }
\end{aligned}
$$

$$
-\left.\frac{\partial C_{\lambda}(t)}{\partial \lambda}\right|_{\lambda=0}=-C(t) \int d t^{\prime}\langle\Omega| \mathcal{J}\left(t^{\prime}\right)|\Omega\rangle+\int \begin{gathered}
\text { Integrated matrix element } \\
d t^{\prime}\langle\Omega| T\left\{\mathcal{O}(t) \mathcal{J}\left(t^{\prime}\right) \mathcal{O}^{\dagger}(0)\right\}|\Omega\rangle \\
\mathcal{J}(t)=\int d^{3} x j(t, \vec{x})
\end{gathered}
$$

Example: axial charge of the nucleon and triton!
Since the operator here is a quark bilinear, a clever to implement this is by modifying the quark propagator.

Example: axial charge of the nucleon and triton!

Since the operator here is a quark bilinear, a clever to implement this is by modifying the quark propagator.

$$
S_{\lambda_{q} ; \Gamma}^{(q)}(x, y)=S^{(q)}(x, y)+\lambda_{q} \int d z S^{(q)}(x, z) \Gamma S^{(q)}(z, y)
$$

Savage et al (NPLQCD), Phys.Rev.Lett.119,062002(2017).
Buochard et al (CALLATT), Phys.Rev.D96, 014504(2017).

$$
\begin{aligned}
& \text { e.g., } \\
& C\left(\mathbf{P} ; t_{,}, t_{O}\right)=\sum_{\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{P}} \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}} e^{i \mathbf{p}_{1} \cdot \mathbf{x}+i \mathbf{p}_{2} \cdot \mathbf{y}} \times
\end{aligned}
$$

This gives more generally:

Matrix elements from a compound propagator/background field

Example of a work using the method: Axial charge of the nucleon

Chang at al (CALLATT), Nature volume 558, 91-94 (2018)

Let's enumerate a some of the methods that give access to structure quantities in general:
Three(four)-point
functions
For e.g., form factors,
moments of structure
functions, Compton
amplitude, transition
amplitudes
$\left.\left.\begin{array}{|c|}\text { Background-field } \\ \text { methods } \\ \text { For e.g., EM moments and } \\ \text { polarizabilities, charge } \\ \text { radius, form factors and } \\ \text { transition amplitudes. }\end{array}\right] \begin{array}{c}\text { Feynman-Hellmann } \\ \text { inspired methods } \\ \text { Similar to background } \\ \text { fields. For e.g., axial charge, } \\ \text { form factors, EM moments, } \\ \text { transition amplitudes }\end{array}\right]$

We did not discuss many other interesting directions in the field, e.g.,

Moments of structure functions
Hadron tensor through inverse transform methods

Quasi-PDFs and pseudo-PDFs

GPDs, TMDs, gluonic observables, etc.

LECTURE III: TOWARDS NUCLEAR STRUCTURE FROM LATTICE QCD

Three features make lattice QCD calculations of nuclei hard:
i) The complexity of systems grows rapidly with the number of quarks.

```
Detmold and Orginos, Phys. Rev.
D 87, 114512 (2013).
```

See also: Detmold and Savage,
Phys.Rev.D82 014511 (2010).
Doi and Endres, Comput. Phys.
Commun. 184 (2013) 117.
ii) Excitation energies of nuclei are much smaller than the QCD scale.

```
Beane at al (NPLQCD), Phys.Rev.D79 114502 (2009).
Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).
Junnakar and Walker-Loud, Phys.Rev. D87 (2013) 114510.
Briceno, Dudek and Young, Rev. Mod. Phys. 90 025001.
```

iii) There is a severe signal-to-noise degradation.

```
Paris (1984) and Lepage (1989). Wagman and Savage, Phys. Rev. D 96, 114508 (2017).
Wagman and Savage, arXiv:1704.07356 [hep-lat].
```

i) The complexity of systems grows rapidly with the number of quarks.

COMPLEXITIES OF QUARK-LEVEL INTERPOLATING FIELDS

COMPLEXITIES OF QUARK CONTRACTIONS

Naively the number of quark contractions for a nucleus goes as:

$$
\left(2 N_{p}+N_{n}\right)!\left(N_{p}+2 N_{n}\right)!
$$

How bad is this?
Example: Consider radium-226 isotope. the number of contractions required is $\sim 10^{1425}$

Naively the number of quark contractions for a nucleus goes as:

How bad is this?
Example: Consider radium-226 isotope. the number of contractions required is $\sim 10^{1425}$

An example of a more efficient algorithm:

$$
\begin{aligned}
& \mathcal{B}_{b}^{a_{1}, a_{2}, a_{3}}\left(\mathbf{p}, t ; x_{0}\right)=\sum_{\mathbf{x}} e^{i \mathbf{p} \cdot \mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_{b}^{\left(c_{1}, c_{2}, c_{3}\right), k} \\
& \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, i_{3}} S\left(c_{i_{1}}, x ; a_{1}, x_{0}\right) S\left(c_{i_{2}}, x ; a_{2}, x_{0}\right) S\left(c_{i_{3}}, x ; a_{3}, x_{0}\right)
\end{aligned}
$$

Can also start propagators at different locations.

Naively the number of quark contractions for a nucleus goes as:

How bad is this?
Example: Consider radium-226 isotope. the number of contractions required is $\sim 10^{1425}$

An example of a more efficient algorithm:

$$
\begin{aligned}
& \mathcal{B}_{b}^{a_{1}, a_{2}, a_{3}}\left(\mathbf{p}, t ; x_{0}\right)=\sum_{\mathbf{x}} e^{i \mathbf{p} \cdot \mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_{b}^{\left(c_{1}, c_{2}, c_{3}\right), k} \\
& \quad \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, i_{3}} S\left(c_{i_{1}}, x ; a_{1}, x_{0}\right) S\left(c_{i_{2}}, x ; a_{2}, x_{0}\right) S\left(c_{i_{3}}, x ; a_{3}, x_{0}\right)
\end{aligned}
$$

Can also start propagators at different locations.

The new scaling is: $\quad M_{w} \cdot N_{w} \cdot \frac{(3 A)!}{(3!)^{A}}$

Number of terms in the sink

Number of terms in the source

Nuclei obtained from such an approach (at a heavier quark masses)

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

EXERCISE 6

According to the naive counting, how many contractions are required for a nucleus at the source and sink with atomic numbers $\mathrm{A}=4,8,12,16$? How many contractions are there with the use of the efficient algorithm described?
ii) Excitation energies of nuclei are much smaller than the QCD scale.

Getting radium directly from QCD will remain challenging for a long time! One should first compute $\mathrm{A}=2,3,4$ systems well. This is till not that easy: $B _d=2 \mathrm{MeV}$!

EXERCISE 7

With a given amount of computational resources, you have achieved a 1% statistical uncertainty on the extracted mass of the nucleon from your lattice QCD calculation. By what factor should you increase your computing resources (your statistics) to also achieve a 1% statistical uncertainty on the binding energy of the deuteron?

- With the most naive operators with similar overlaps to all states, unreasonably large times are needed to resolve nuclear energy gaps.
- The key to success of this program is in the use of good interpolating operators for nuclei. Since nuclei are bound states, interpolating operators with good overlap to compact states in a volume are desired.
- Ideally need to use a large set of operators for a variational analysis, but this has remained too costly in nuclear calculations, and only recently possible.
- Methods such as matrix Prony that eliminate the excited states in linear combinations of interpolators or correlations functions have shown to be useful.

```
A good review: Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).
```


EXERCISE 8

Consider a simple two-state model in the spectral decomposition of a Euclidean two-point function. Demonstrate that the time scale to reach the ground state of the model with a finite statistical precision can depend highly on the corresponding overlap factor for the state. It is sufficient to show this numerically and for a set of chosen energies and overlap factors.
iii) There is a severe signal-to-noise degradation.

The origin of noise

$$
\left.\left.\langle | C\right|^{2}\right\rangle=\langle 0| N^{\dagger}(t) N(t) N^{\dagger}(0) N(0)|0\rangle
$$

The origin of noise

$$
\left.\left.\langle | C\right|^{2}\right\rangle=\langle 0| N^{\dagger}(t) N(t) N^{\dagger}(0) N(0)|0\rangle
$$

The ground-state of the variance correlator is three pions and not two nucleons:

$$
\operatorname{StN}\left(C_{i}\right) \sim \frac{\left\langle C_{i}\right\rangle}{\sqrt{\left.\left.\langle | C_{i}\right|^{2}\right\rangle}} \sim e^{-\left(M_{N}-\frac{3}{2} m_{7}\right) t}
$$

Parisi (1984) and Lepage (1989).
Wagman and Savage (2016, 2017).

Despite these challenges, efficient algorithms and new computational and analysis strategies have allowed studies of small nuclei from lattice QCD, albeit yet at unphysical quark masses, but the progress continues...

Let us go through several example of the success of lattice in nuclear structure studies...

Application of Feynman-Hellmann method: $p p$ fusion $\quad p+p \rightarrow d+e^{+}+\nu_{e}$

Savage et al (NPLQCD), Phys.
Rev. Lett. 119, 062002 (2017).

Application of Feynman-Hellmann method: Tritium beta decay!

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

Parreno et al (NPLQCD), Phys. Rev. D 103, 074511 (2021), Savage et al (NPLQCD), Phys. Rev. Lett. 119, 062002(2017).

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

EMC effect from QCD?

How does the distributions of quarks in a nucleon change if bound to a nucleus?

$$
g_{X}^{(f)}(A)=\langle A| \bar{q}_{f} \Gamma_{X} q_{f}|A\rangle
$$

$$
R_{X}^{(f)}(A)=g_{X}^{(f)}(A) / g_{X}^{(f)}(p)
$$

$$
N_{f}=2+1, m_{\pi} \approx 450 \mathrm{MeV}, a \approx 0.12 \mathrm{fm}
$$

ROADMAP FOR NUCLEAR PHYSICS FROM LATTICE QCD

ROADMAP FOR NUCLEAR PHYSICS FROM LATTICE QCD

DESPITE CHALLENGES, GREAT PROGRESS HAS BEEN MADE. LQCD

 IS ON TRACK TO DELIVER RESULTS ON IMPORTANT QUANTITIES FOR THE EIC PHYSICS.

