Hadron Spectroscopy: Why and How (Lecture I)

National Nuclear Physics Summer School June 2021

Matthew Shepherd Indiana University

Outline

I. Hadron Spectroscopy: Why and How
I.I.Unique features of QCD
I.2.Why use spectroscopy as a tool to study QCD?
I.3. How do we classify mesons?
I.4. Introduction to experiment
2. Current Results in Hadron Spectroscopy
2.I. Heavy Quark Spectroscopy
2.2. Light Quark Spectroscopy
2.3. Summary and Outlook

QCD in the Standard Model

- Three quark colors
- Colorless hadrons apparently required
- Two typical arrangements: mesons and baryons

Mesons
(e.g., ז, K, D)

$$
q=\frac{2}{3} e
$$

$$
\begin{gathered}
q=0 \\
q=-e
\end{gathered}
$$

$$
q=-\frac{1}{3} e
$$

Evidence of Color

Δ^{++}

$$
J=\frac{3}{2}
$$

$\frac{1}{\sqrt{6}}(r g b-r b g+b r g-b g r+g b r-g r b)$

More Evidence of 3 Colors

- Probes the ratio of quark to lepton couplings in QED: $Q_{q}{ }^{2} / Q_{\mu}{ }^{2}$

Homework: Compute the expected value of R below and above charm (and bottom) thresholds under the assumptions that there are I and 3 colors of quarks. Compare with experimental data from the PDG.

Interactions in QED

Have: freely propagating spin-I/2 particle

$\mathcal{L}=i(\hbar c) \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\left(m c^{2}\right) \bar{\psi} \psi$

Want: "physics" to remain invariant under local phase transformations

$$
\psi \rightarrow e^{i \theta(x)} \psi
$$

Doing so requires introduction of a freely propagating massless gauge field (the photon) and the interaction of this field with spin- $1 / 2$ particles

monn

$$
-\frac{1}{16 \pi} F^{\mu \nu} F_{\mu \nu}
$$

Interactions in QCD

Have: freely propagating spin-I/2 quark in rgb space

Want: "physics" to remain invariant under unitary color transformations

This requires the introduction of eight massless gauge fields (the gluons) and several interaction terms -- note that gluons interact with each other!

00000000000

gluons

quark-gluon vertex

three-gluon vertex

four-gluon vertex

Higher Order Corrections

- In QED, vacuum polarization acts to "screen" the charges of interacting particles resulting in weaker force at large distance.

scale of corrections set by $a=1 / / 37$
- In QCD quark loops continue to screen the QCD force, but gluon loops provide an "anti-screening" effect that dominates, resulting in a stronger force at large distances.

scale of QCD corrections set by $a_{s}>0.1$

Gluon Interactions in QCD

S. Bethke hep-ex/0606035

- QCD has interesting properties
- gluon-gluon interactions
- confinement
- Nonpurturbative in the interesting domain
- Study QCD using hadrons

The Forces that Bind Hydrogen and Mesons

The Electromagnetic Force and Quantum Electrodynamics (QED)
(Hydrogen Atom)

Simple Term

Correction

Potential

$$
\mathrm{V}(\mathrm{r})=-\frac{\alpha}{\mathrm{r}}
$$

IONIZATION IS POSSIBLE

The Strong Force and Quantum Chromodynamics (QCD) (Meson)

Simple Term (small distances)
"Correction" (large distances)

Potential (model)

$$
\mathrm{V}(\mathrm{r})=-\frac{4}{3} \frac{\alpha_{\mathrm{s}}}{\mathrm{r}}+\mathrm{F}_{0} \mathrm{r}
$$

QUARKS ARE CONFINED

Studying Forces with Spectroscopy

Electromagnetic Force

Strong Force
$c \bar{c}$

Other Configurations of Quarks and Gluons

"tetraquark"

"hybrid meson"

Not forbidden by the requirement of colorless hadrons -- do they exist in nature?

Spectroscopy and QCD

- Studying the spectrum of hadrons motivated the quark model and led to development of QCD
- QCD has interesting properties
- confinement: force is strong at large distances
- colorless hadrons that can be made with any number of quarks
- gluon-gluon interactions: how do they affect the spectrum and properties of hadrons?
- Why is the spectrum of hadrons observed in nature so simple? (...or is it?)

Classifying Mesons

Properties of Mesons

Constituent Quark Model

- Assemble mesons from spin I/2 constituent quarks with effective masses
- a model: not the quark fields in the QCD Lagrangian

color singlet quark anti-quark

$$
\begin{gathered}
\vec{J}=\vec{L}+\vec{S} P=(-1)^{L+1} C=(-1)^{L+S} \\
S=0 \text { or } \mathrm{I}, \text { and } \mathrm{L}=0, \mathrm{I}, 2, \ldots
\end{gathered}
$$

- P : inverts coordinates
- quark wave function is odd under spatial inversion for L odd: (-I) ${ }^{\text {L }}$
- intrinsic party of quark anti-quark: $\mid x-I=-I$
- C: particle \rightarrow anti-particle
- neutral eigenstates
- spatial inversion: $(-I)^{\mathrm{L}}$
- fermion \rightarrow anti-fermion: - I
- opposite spins: - $\left.\right|^{\text {s+1 }}$

巴ดannoniun soectrun

- All states below $2 M_{D}$ observed
- No extra states below $2 \mathrm{MD}_{\mathrm{D}}$
- Good agreement with potential model calculation
- Structure is a quark anti-quark each with spin- $\frac{1}{2}$ and having a mass of about 1.5 GeV

$$
\vec{J}=\vec{L}+\vec{S} \quad P=(-1)^{L+1} \quad C=(-1)^{L+S}
$$

Isospin

- symmetry from $m_{u} \approx m_{d}$
- in isospin space:
u has $\mathrm{I}=\mathrm{I} / 2, \mathrm{I}_{\mathrm{z}}=\mathrm{I} / 2$
d has $I=I / 2, I_{z}=-I / 2$
- Combining quark antiquark elements from this vector space gives four combinations (examples for 0^{-+}given)

$$
\begin{aligned}
|u \bar{d}\rangle & \rightarrow \pi^{+} \\
\frac{1}{\sqrt{2}}(|u \bar{u}\rangle-|d \bar{d}\rangle) & \rightarrow \pi^{0} \\
|d \bar{u}\rangle & \rightarrow \pi^{-}
\end{aligned}
$$

triplet: isovector ($\mathrm{I}=\mathrm{I}$)

Homework: why are these almost exactly a factor of two different?

$$
\begin{gathered}
\mathcal{B}\left(\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi\right)=0.34 \\
\mathcal{B}\left(\psi(2 S) \rightarrow \pi^{0} \pi^{0} J / \psi\right)=0.18
\end{gathered}
$$

Homework: why is the first so much bigger than the second even though there is less phase space available?

$$
\begin{aligned}
\mathcal{B}(\psi(2 S) \rightarrow \eta J / \psi) & =0.034 \\
\mathcal{B}\left(\psi(2 S) \rightarrow \pi^{0} J / \psi\right) & =0.0013
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|d \bar{d}\rangle) \rightarrow \eta
$$

singlet: isoscalar $(I=0)$

G Parity

- Extension of C to isovectors (charged particles):

$$
|u \bar{d}\rangle \rightarrow|\bar{u} d\rangle \rightarrow|\bar{d} u\rangle
$$

- apply C
- rotate by π in isospin space: $u \leftrightarrow d$
- Multiplicative
- Mostly conserved in strong interactions
- general: $G=C(-I)^{\prime}$

$$
\begin{gathered}
\text { isospin: I : G = -C } \\
|u \bar{u}\rangle-|d \bar{d}\rangle \rightarrow|d \bar{d}\rangle-|u \bar{u}\rangle
\end{gathered}
$$

$B\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 1$

$$
B\left(\rho^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=1 \times 10^{-4}
$$

$$
\begin{aligned}
B\left(\omega \rightarrow \pi^{+} \pi^{-}\right) & =0.015 \\
B\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) & =0.89
\end{aligned}
$$

Light Quark Nonets

0^{-}nonet
neutrals: $\mathrm{C}=+$

1^{-}nonet
neutrals: $\mathrm{C}=-$
motivate the quark model ingredients from studying and classifying mesons!

fast forward 50 years... and deploy some supercomputing to use QCD to predict a meson spectrum

Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

All states have strangeness $=0$

Hybrid Mesons

color singlet quark anti-quark

$\vec{J}=\vec{L}+\vec{S} \quad P=(-1)^{L+1} \quad C=(-1)^{L+S}$
Allowed JPC: $0^{-+}, 0^{++}, I^{--}, 1^{+-}, 2^{++}, \ldots$ Forbidden JPC: $0^{--}, 0^{+-}, 1^{-+}, 2^{+}, \ldots$

Recap

- Spectroscopy depends on identifying properties that are useful for sorting and classifying hadrons
- Enables identification of states that don't fit a pattern
- New patterns suggest new degrees of freedom
- QCD predicts new states that should not fit the standard patterns predicted by the quark-antiquark model of mesons
- How do we produce them?
- How do we detect them?
- How do we measure the properties of mesons that we want to use to sort the spectrum?

Some Experimental Preliminaries

Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

All states have strangeness $=0$

Decays and Conservation Laws

- Conservation laws that apply to all decays
- angular momentum
- four-momentum
- charge
- Symmetries/conservations laws of strong interactions
- C
- P
- isospin (mostly)
- quark flavor: strangeness or charmness
- Measuring these properties for decay products directly informs us of the properties of the parent particle

Production and Detection

Colliding Beam
 $e^{+} e^{-}$
 proton-proton proton-antiproton

Fixed Target
electromagnetic or hadron beams

TIT DEPARTMENT OF PHYSICS

Detection: Observables

- Long lived particles
- charged: $\mathrm{p}, \pi, \mathrm{K}$
- neutral: $\mathrm{n}, \mathrm{\gamma}, \mathrm{~K}_{\mathrm{L}}$
- Types of detectors:
- tracking: measure momentum
- calorimetry: measure energy
- particle ID: measure velocity
- Assemble pieces to get fourmomentum

Gluf

for a few GlueX γp collision events, see: https://hpg.sitehost.iu.edu/hdvis/event.html

Histograms: Invariant Mass

$$
\gamma p \rightarrow X
$$

reconstruct all particles
consider all combinations of two photons

Homework -- show:

$$
\begin{gathered}
M_{\gamma \gamma}^{2}=\left|p_{\gamma, 1}+p_{\gamma, 2}\right|^{2} \\
M_{\gamma \gamma}^{2}=2 E_{1} E_{2}(1-\cos \theta)
\end{gathered}
$$

θ : angle between photon momenta

Branching Fractions and Widths

- Experimentally accessible:

$$
B_{i}=\frac{\Gamma_{i}}{\Gamma_{\mathrm{tot}}}
$$

- Theoretically interesting:

$$
\Gamma_{i} \propto\left|\mathcal{M}_{i}\right|^{2} \times(\text { phase space })
$$

physics induced:
$X_{c o}$ is more likely to decay

Decays: The OZI Rule
 (S. Okubo, G. Zweig, and J. lizuka)

OZI Favored

$B(\phi \rightarrow K K)=0.83$

OZI Suppressed

$$
B\left(\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=0.15
$$

Helps one infer "hidden" quark flavor of mesons.

OZI Rule and Widths

An Example: Measuring Spin

TT DEPARTMENT OF PHYSICS

Volume 8, Number 2
PHYSICAL REVIEW LETTERS
January 15, 1962
DIFFERENTIAL $\pi-\pi$ CROSS SECTIONS: EVIDENCE FOR THE SPIN OF THE ρ MESON*
D. Duane Carmony ${ }^{\dagger}$ and Remy T. Van de Walle \ddagger

Lawrence Radiation Laboratory, University of California, Berkeley, California (Received November 6, 1961; revised manuscript received December 27, 1961)

Helicity

- Helicity operator is the spin projection along the momentum of the particle
- $\quad h=\vec{J} \cdot \hat{p}$
- eigenvalues: $\lambda=-S, \ldots, S$
- invariant under rotation
- Helicities of stable final state particles are not measured and must be summed over when computing decay distributions

$$
\begin{gathered}
X \rightarrow 1+2 \\
\text { initial state } \mathrm{X}:|J m\rangle \\
\text { two-particle final state: }\left|\theta, \phi, \lambda_{1}, \lambda_{2}\right\rangle \\
\text { decay amplitude } \propto D_{M, \lambda}^{J^{*}}(\phi, \theta,-\phi) A_{\lambda_{1} \lambda_{2}} \\
\text { where: } \lambda=\lambda_{1}-\lambda_{2}
\end{gathered}
$$

Decay Kinematics

initial ρ configuration in the helicity frame

$$
J=1, m=0
$$

Rotation between frames given by

$$
D_{m^{\prime}, m}^{J}(\alpha, \beta, \gamma)=e^{-i m^{\prime} \alpha} d_{m^{\prime}, m}^{J}(\beta) e^{-i m \gamma}
$$

$$
d_{m^{\prime}, m}^{J}=(-1)^{m-m^{\prime}} d_{m, m^{\prime}}^{J}=d_{-m,-m^{\prime}}^{J}
$$

For the sketch above: $\alpha=\gamma=0$ and $\beta=\theta$

$$
d_{0,0}^{1}(\theta)=\cos \theta \quad d_{1,0}^{1}(\theta)=\frac{-\sin \theta}{\sqrt{2}}
$$

Dalitz Plots

- spinless particle $\rightarrow 3$ spinless particles: $X \rightarrow 123$
- $M x^{2}=M_{12^{2}}+M_{23^{2}}+M_{13^{2}}$
- for any X, dynamics is a function of two variables: M_{12} and M_{23}
- All information about decay can be learned by studying a Dalitz plot of $M_{12}{ }^{2}$ vs. $M_{23}{ }^{2}$
- phase space is uniform on this plot

Dalitz Plots

$D_{s}{ }^{+} \rightarrow K^{+}{ }^{-}-\pi^{+}$
Homework: the decay of a spinless particle to 3 spinless particles can be described by $3 \times$ 4 -vectors $=12$ numbers.

Use symmetry arguments and conservation laws to show that 10 of the 12 unknowns can be eliminated leaving only two remaining variables to describe the physics of the decay.

Any two variables will work, the Dalitz plot is a common choice.

Experimental Strategy

- Search for new particles
- bumps in invariant mass spectra
- unique decay patterns (angular distributions) in phase space
- Use experiment to determine properties of mesons:
- mass and width
- decay modes
- quantum numbers: JJC
- Patterns of mesons then test predictions of the hadron spectrum from models or direct calculations of QCD

Summary

- QCD exhibits interesting behavior at the low-energy/longdistance limit: strong gluon-gluon interactions and confinement
- How do hadrons and their properties emerge from the underlying theory of QCD?
- Are there particles like hybrid mesons or glueballs that would be unique manifestations of the gluonic degrees of freedom in QCD?
- Spectroscopy provides insight into the fundamental structure of hadrons, and can do so over both the long and short distance regimes of QCD.
- A wide variety of experiments can be used to produce and study hadrons: properties relevant for spectroscopy such as mass, width and $J^{P C}$ can be inferred from experimental data

