THE 2021 NATIONAL NUCLEAR PHYSICS SUMMER SCHOOL

LATTICE QCD

AND
NUCLEON(US) STRUCTURE
ZOHREH DAVOUDI
UNIVERSITY OF MARYLAND AND RIKEN FELLOW

LECTUTE I:
 LATTICE QCD FORMALISM AND METHODOLOGY

LECTUTE II:
 NUCLEON STRUCTURE FROM LATTICE QCD

LECTUTE III:
TOWARDS NUCLEAR STRUCTURE FROM LATTICE QCD

LECTUTE I:

LATTICE QCD FORMALISM AND METHODOLOGY

Quantum chromodynamics (QCD) in continuum:

QCD is a $S U(3)$ Yang-Mills theory augmented with several flavors of massive quarks:

$$
\begin{aligned}
\text { Quark kinetic and mass term } & \text { Quark/gluon interactions } \\
\mathcal{L}_{Q C D}= & \sum_{f=1}^{N_{f}}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] \\
& -\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{g}{2} f_{i j k} F_{\mu \nu}^{i} A^{i \mu} A^{j \nu}-\frac{g^{2}}{4} f_{i j k} f_{k l m} A_{\mu}^{j} A_{\nu}^{k} A^{l \mu} A^{m \nu}
\end{aligned}
$$

Quantum chromodynamics (QCD) in continuum:

QCD is a $\operatorname{SU}(3)$ Yang-Mills theory augmented with several flavors of massive quarks:

$$
\begin{aligned}
\text { Quark kinetic and mass term } & \text { Quark/gluon interactions } \\
\mathcal{L}_{Q C D}= & \sum_{f=1}^{N_{f}}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] \\
& -\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{g}{2} f_{i j k} F_{\mu \nu}^{i} A^{i \mu} A^{j \nu}-\frac{g^{2}}{4} f_{i j k} f_{k l m} A_{\mu}^{j} A_{\nu}^{k} A^{l \mu} A^{m \nu}
\end{aligned}
$$

Gluons kinetic and interaction terms

Observe that:

i) There are only $1+N_{f}$ input parameters plus QCD coupling. Fix them by a few quantities and all strongly-interacting aspects of nuclear physics is predicted (in principle)!
ii) QCD is asymptotically free such that: $\alpha_{s}\left(\mu^{\prime}\right)=\frac{1}{2 b_{0} \log \frac{\mu^{\prime}}{\Lambda_{Q C D}}}$

Quantum chromodynamics (QCD) in continuum:

QCD is a $S U(3)$ Yang-Mills theory augmented with several flavors of massive quarks:

$$
\mathcal{L}_{Q C D}=\sum_{f=1}^{\text {Quark kinetic and mass term }}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] .
$$

Gluons kinetic and interaction terms

Let's enumerate the steps toward numerically simulating this theory nonperturbatively...

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quark fields. Need to specify the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, decay rates, etc.

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

$$
T, L \gg m_{\pi}^{-1} \quad a \ll \Lambda_{Q C D}^{-1}
$$

Step I: Discretize the QCD action in both space and time. Consider a finite hypercubic lattice. Wick rotate to imaginary times.

$$
T, L \gg m_{\pi}^{-1} \quad a \ll \Lambda_{Q C D}^{-1}
$$

An example of a discretized action by K. Wilson:

$$
\begin{aligned}
= & 2 / g^{2} \\
S_{\text {Wilson }}^{(E)} & \left.=\frac{\beta}{N_{c}} \sum_{n} \sum_{\mu<\nu} \Re \operatorname{Tr}\left[\mathbb{1}-P_{\mu \nu ; n}\right] \quad \begin{array}{l}
\quad \begin{array}{l}
\text { Wilson parameter. Gives the naive action if set } \\
\text { to zero and has doublers problem. }
\end{array} \\
\\
\end{array} \begin{array}{l}
-\sum_{n} \bar{q}_{n}\left[\bar{m}^{(0)}+4\right] q_{n}+\sum_{n} \sum_{\mu}\left[\bar{q}_{n} \frac{r-\gamma_{\mu}}{2} U_{\mu}(n) q_{n+\hat{\mu}}+\bar{q}_{n} \frac{r+\gamma_{\mu}}{2} U_{\mu}^{\dagger}(n-\hat{\mu}) q_{n-\hat{\mu}}\right.
\end{array}\right]
\end{aligned}
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Quark part of expectation values

$$
\begin{aligned}
\text { Define: }\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\mathcal{Z}_{F}=\int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{[(F)}[U, q, \bar{q}]}=\prod_{f} \operatorname{det} D_{f} \quad \text { Dirac matrix }
\end{aligned}
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Quark part of expectation values

$$
\begin{gathered}
\text { Define: }\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\mathcal{Z}_{F}=\int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{[F]}[U, q, \bar{q}]}=\prod_{f} \operatorname{det} D_{f} \quad \text { Dirac matrix }
\end{gathered}
$$

$$
\sqrt{7}
$$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} e^{-S_{\text {lattice }}^{(G)}[U]} \mathcal{Z}_{F}[U]\langle\hat{\mathcal{O}}\rangle_{F}
$$

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(G)}[U]-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \hat{\mathcal{O}}[U, q, \bar{q}]
$$

Quark part of expectation values

$$
\text { Define: }\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U]
$$

$$
\mathcal{Z}_{F}=\int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]}=\prod_{f} \operatorname{det} D_{f} \quad \text { Dirac matrix }
$$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} U_{\mu} e^{-S_{\text {latitioe }}^{[(U)} \mathcal{Z}_{F}[U]}\left\langle\hat{\hat{O}_{F}}\right.
$$

$$
\sqrt{0}
$$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{1}{N} \sum_{i}^{N}\langle\hat{\mathcal{O}}\rangle_{F}\left[U^{(i)}\right]
$$

N number of $U^{(i)}$ sampled from the distribution: $\frac{1}{\mathcal{Z}} e^{-S_{\text {lattice }}^{(G)}[U]} \prod_{f} \operatorname{det} D_{f}$

Steps II is computationally costly...
Example: Consider a lattice with: $L / a=48, T / a=256$
Sampling SU(3) matrices. Already for one sample requires storing

$$
8 \times 48^{3} \times 256=226,492,416
$$

c-numbers in the computer!
Requires calculating determinant of a large matrix.
Requires tens of thousands of uncorrelated samples. Molecular-dynamics-inspired hybrid Monte Carlo sampling algorithms often used.

Step III: Form the correlation functions by contracting the quarks. Need to specify the interpolating operators for the state under study.

$$
\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {lattice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U]
$$

Step III: Form the correlation functions by contracting the quarks. Need to specify the interpolating operators for the state under study.

$$
\begin{gathered}
\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{\text {latatice }}^{(F)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\checkmark
\end{gathered}
$$

$$
\text { e.g., } \hat{O}=\bar{u} \gamma_{5} d
$$

Step III: Form the correlation functions by contracting the quarks. Need to specify the interpolating operators for the state under study.

$$
\begin{gathered}
\langle\hat{\mathcal{O}}\rangle_{F}=\frac{1}{\mathcal{Z}_{F}} \int \mathcal{D}_{q} \mathcal{D} \overline{\tilde{D}} e^{-\int_{\text {latucece }}^{[(T)}[U, q, \bar{q}]} \mathcal{O}[q, \bar{q}, U] \\
\Omega
\end{gathered}
$$

$$
\text { e.g., } \hat{O}=\bar{u} \gamma_{5} d
$$

$$
\text { e.g., } \hat{O}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma^{5} u-\bar{d} \gamma^{5} d\right)
$$

Quark disconnected diagrams. Require expensive all-to-all propagators.

Steps III is computationally costly...
Example: Consider a lattice with: $L / a=48, T / a=256$
Solving

$$
[D(U)]_{X, Y}[S(U)]_{Y, X_{0}}=G_{X, X_{0}}
$$

Dirac
matrix

Quark propagator

Requires taking determinant and inverting a matrix with dimensions:

$$
\begin{gathered}
\left(4 \times 3 \times 48^{3} \times 256\right)^{2}= \\
339,738,624 \times 339,738,624
\end{gathered}
$$

EXERCISE 1

Show that for the correlation function of the charged pion:

$$
\left\langle\hat{O}^{\pi^{+}}(n) \hat{O}^{\pi^{+} \dagger}(0)\right\rangle_{F}=-\operatorname{Tr}\left[D_{u}^{-1}(n, 0) D_{d}^{-1}(n, 0)\right]
$$

where D_{u}^{-1} and D_{d}^{-1} denote the the inverse Dirac matrix (the quark propagator) for the u and d quarks, respectively. Trace is over spin and color degrees of freedom.

BONUS EXERCISE 1

Show that for the correlation function of the neutral pion:

$$
\begin{aligned}
\left\langle\hat{O}^{\pi^{0}}(n) \hat{O}^{\pi^{0} \dagger}(0)\right\rangle_{F}= & -\frac{1}{2} \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(n, 0) \gamma^{5} D_{u}^{-1}(0, n)\right] \\
& +\frac{1}{2} \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(n, n)\right] \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(0,0)\right] \\
& -\frac{1}{2} \operatorname{Tr}\left[\gamma^{5} D_{u}^{-1}(n, n)\right] \operatorname{Tr}\left[\gamma^{5} D_{d}^{-1}(0,0)\right]+\{u \leftrightarrow d\}
\end{aligned}
$$

Step IV: Extract energies and matrix elements from correlation functions

$$
C_{\hat{\mathcal{O}}, \hat{\mathcal{O}}^{\prime}}(\tau ; \mathbf{d})=\sum_{\mathbf{x}} e^{2 \pi i \mathbf{d} \cdot \mathbf{x} / L}\langle 0| \hat{\mathcal{O}}^{\prime}(\mathbf{x}, \tau) \hat{\mathcal{O}}^{\dagger}(\mathbf{0}, 0)|0\rangle=\mathcal{Z}_{0}^{\prime} \mathcal{Z}_{0}^{\dagger} e^{-E^{(0)} \tau}+\mathcal{Z}_{1}^{\prime} \mathcal{Z}_{1}^{\dagger} e^{-E^{(1)} \tau}+\ldots
$$

Ground state and a tower of excited states are, in principle, accessible!

Step IV: Extract energies and matrix elements from correlation functions

$$
C_{\hat{\mathcal{O}}, \mathcal{O}^{\prime}}(\tau ; \mathbf{d})=\sum_{\mathbf{x}} e^{2 \pi i \mathbf{d} \cdot \mathbf{x} / L}\langle 0| \hat{\mathcal{O}}^{\prime}(\mathbf{x}, \tau) \hat{\mathcal{O}}^{\dagger}(\mathbf{0}, 0)|0\rangle=\mathcal{Z}_{0}^{\prime} \mathcal{Z}_{0}^{\dagger} e^{-E^{(0)} \tau}+\mathcal{Z}_{1}^{\prime} \mathcal{Z}_{1}^{\dagger} e^{-E^{(1)} \tau}+\ldots
$$

Ground state and a tower of excited states are, in principle, accessible!

Example: $N N\left({ }^{1} S_{0}\right)$

【 $24^{3} \times 48 \quad$ 【 $32^{3} \times 48$

What should we make of the volume dependence?

