Fundamental Symmetries

Emilie Passemar*
Indiana University/Jefferson Laboratory
National Nuclear Physics Summer School (NNPSS2021)
UNAM, Mexico \& IU, Bloomington, June 22, 2021

*Supported by NSF

Outline :

1. Introduction and Motivation
2. The Standard Model
3. Selected examples
4. $\eta \rightarrow 3 \pi$ and light quark mass ratio
5. Anomalous magnetic moment of the muon
6. Axial form factor of the nucleon and neutrino physics
7. Conclusion and outlook

2.4 Strong Interactions

Introduction

- In particle physics a simpler table made of leptons and quarks: the degrees of freedom

- 3 forces: electromagnetic, weak and strong forces

Strong interaction

- Problem: quarks and gluons are bound inside hadrons

PDG'12

- High energies, short distance:
α_{S} small \Rightarrow Asymptotic freedom
Perturbative QCD
Theory "easy" to solve
Order-by-order expansion in $\frac{\alpha_{s}(\mu)}{\pi}$

$$
\sigma=\sigma_{0}+\underbrace{\frac{\alpha_{s}}{\pi} \sigma_{1}}_{\text {small }}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} \sigma_{2}}_{\text {smaller }}+\left(\frac{\alpha_{s}}{\pi}\right)^{3} \sigma_{3}+\ldots
$$

Asymptotic freedom

Strong interaction

- Looking for new physics in hadronic processes \Rightarrow not direct access to quarks due to confinement

PDG'12

$>$ Low energy ($\mathrm{Q}<\sim 1 \mathrm{GeV}$), long distance: α_{S} becomes large!
\Rightarrow Non-perturbative QCD
A perturbative expansion in the usual sense fails
\Rightarrow Use of alternative approaches, expansions...

Strong interaction

- Looking for new physics in hadronic processes \Rightarrow not direct access to quarks due to confinement

Lattice QCD

- Principle: Discretization of the space time and solve QCD on the lattice numerically
- All quark and gluon fields of QCD on a 4D-lattice
- Field configurations by Monte Carlo sampling
- Important subtleties due to the discretization, should come back to the continuum, formulation of the fermions on the lattice...

Strong interaction

- Looking for new physics in hadronic processes \Rightarrow not direct access to quarks due to confinement

Quark masses

- Strong force: If $\mathrm{m}_{\mathrm{u}} \sim \mathrm{m}_{\mathrm{d}}: \mathrm{M}_{\mathrm{n}} \sim \mathrm{M}_{\mathrm{p}}$ isospin symmetry

Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons (or up and down quarks)

Quark masses

- Strong force: If $\mathrm{m}_{\mathrm{u}} \sim \mathrm{m}_{\mathrm{d}}: \mathrm{M}_{\mathrm{n}} \sim \mathrm{M}_{\mathrm{p}}$ isospin symmetry

Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons (or up and down quarks)

Quark masses

Neutron

Proton

vs.

Heisenberg'60
Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons

- Electromagnetic energy: one obvious difference between a neutron and a proton is their electric charges:

$$
\boldsymbol{Q}_{P}=\boldsymbol{1} \text { and } \boldsymbol{Q}_{n}=\mathbf{0} \text { Since } \boldsymbol{E}_{e} \propto \frac{\boldsymbol{Q}^{2}}{\boldsymbol{R}} \quad \square \mathrm{M}_{\mathrm{p}}>\mathrm{M}_{\mathrm{n}} \text { ? }
$$

Quark masses

Neutron
(1) (d)

Proton
vs.

- Strong force: If $m_{u} \sim m_{d}$: $M_{n} \sim M_{p}$ isospin symmetry

Heisenberg'60
Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons

- Electromagnetic energy: one obvious difference between a neutron and a proton is their electric charges:

$$
\boldsymbol{Q}_{P}=\boldsymbol{1} \text { and } \boldsymbol{Q}_{n}=\mathbf{0} \text { Since } \boldsymbol{E}_{e} \propto \frac{\boldsymbol{Q}^{2}}{\boldsymbol{R}} \longmapsto \mathrm{M}_{\mathrm{p}}>\mathrm{M}_{\mathrm{n}} \text { ? }
$$

\square Terrible consequences: Proton would decay into neutrons and there will be no chemistry and we would not be there in this room!

Quark masses

Neutron

Proton

- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry Heisenberg'60
- Electromagnetic energy: $M_{p}>M_{n}$
- This is not the case: Why?

Quark masses

Neutron

vs.

Proton

- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry Heisenberg'60
- Electromagnetic energy: $M_{p}>M_{n}$
- This is not the case: Why?
- Another small effect in addition to e.m. force:
different fundamental quark masses
$\boldsymbol{m}_{d} \neq \boldsymbol{m}_{u}$

\square Different coupling to Higgs field

Quark masses

Neutron
Proton

QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The c - and b-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the b-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
u

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=\frac{2}{3} e \quad I_{z}=+\frac{1}{2} \\
& m_{u} / m_{d}=0.48_{-0.08}^{+0.07}
\end{aligned}
$$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

Particle Data Group'18

$m_{d}-m_{u}=4.7-2.2=2.5 \mathrm{MeV}$

Quark mass difference more important than e.m. effect

Neutrons can decay in protons!

Quark masses

Neutron

Proton
 _

QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The c - and b-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the b-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
u

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
& m_{u} / m_{d}=0.48_{-0.08}^{+0.07}
\end{aligned}
$$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

Quark masses

Neutron
Proton

QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The c - and b-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the b-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
u

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
& m_{u} / m_{d}=0.48_{-0.08}^{+0.07}
\end{aligned}
$$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

Quark masses

Neutron

Proton

-

QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The c - and b-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the b-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.

$$
\begin{array}{cc}
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right) \\
m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} & \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
m_{u} / m_{d}=0.48_{-0.08}^{+0.07} &
\end{array}
$$

d

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

u

Particle Data Group'18

$\square \quad m_{d}-m_{u}=4.7-2.2=2.5 \mathrm{MeV}$

$$
m_{d}-m_{u}=4.7-2.2=2.5 \mathrm{MeV}
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

2.5 Success of the Standard Model and search for New Physics

Oscillations of Kaons

- Let us consider simplest hadrons: the mesons. They are quark-anti-quark bound states. They interact with strong, electromagnetic and weak forces

- The simplest one is the pion:

The pions mediate strong force in nuclei It is ubiquitous in hadronic collisions

Oscillations of Kaons

- Let us consider simplest hadrons: the mesons. They are quark-anti-quark bound states. They interact with strong, electromagnetic and weak forces.

- The simplest one is the pion:
(1) (त)

- The ones containing a s quark are the kaons

```
K
K
```

Discovered in cosmic ray experiments

Oscillations of Kaons

- Discovered in 1964 by Christenson, Cronin, Fitch and Turlay
\Rightarrow Nobel Prize in 1980 for Cronin and Fitch
- Start with a $\boldsymbol{K}^{\mathbf{0}} \square$ after some time it transforms into a $\overline{\boldsymbol{K}}^{\mathbf{0}}$

through weak interaction Short distance effect
- The rate of this oscillation is suppressed but measurable in the Standard Model
\Rightarrow goes through weak interactions $\sim G_{F} \quad G_{F} \simeq 1.17 \times 10^{-5} \mathrm{GeV}^{-2}$

Oscillations of Kaons

- Discovered in 1964 by Christenson, Cronin, Fitch and Turlay
\Rightarrow Nobel Prize in 1980 for Cronin and Fitch
- Start with a $\boldsymbol{K}^{\mathbf{0}} \square$ after some time it transforms into a $\overline{\boldsymbol{K}}^{\mathbf{0}}$

through weak interaction Short distance effect
- The rate of this oscillation is very suppressed in the Standard Model \Rightarrow goes through weak interactions $\sim G_{F}$
- How can we understand the oscillation rate?

Oscillations of Kaons

- Process described using the bag parameter B_{K} Fundamental hadronic quantity proportional to matrix element
\square determined using lattice $Q C D$

$$
\begin{gathered}
\left\langle\bar{K}^{0}\right| \mathbf{H}\left|K^{0}\right\rangle \sim \sum_{i j} \lambda_{i} \lambda_{j} S\left(r_{i}, r_{j}\right) \eta_{i j}\left\langle O_{\Delta S=2}\right\rangle \\
\left.\left\langle O_{\Delta S=2}\right\rangle=\alpha_{s}(\mu)^{-2 / 9}\left\langle\bar{K}^{0}\right|\left(\bar{s}_{L} \gamma^{\alpha} d_{L}\right)\left(\bar{s}_{L} \gamma_{\alpha} d_{L}\right)\left|K^{0}\right\rangle \equiv\left(\frac{4}{3} M_{K}^{2} f_{K}^{2}\right) \widehat{B_{K}}\right) \\
\lambda_{i} \equiv V_{i d} V_{i s}^{*} \quad ; \quad r_{i} \equiv m_{i}^{2} / M_{W}^{2} \quad(i=u, c, t)
\end{gathered}
$$

Oscillations of Kaons

- Since process is suppressed in the Standard Model:

very sensitive to new physics: new degrees of freedom and symmetries

$$
G_{F} V_{i j} V_{i j}^{\dagger} \frac{\boldsymbol{m}_{i, j}^{2}}{M_{W}^{2}}
$$

BSM

$1 / \Lambda^{2}$

- If measured with very good precision provided the SM contribution is known

stringent constraints on new physics models

Oscillations of B mesons

- Similar tests with other mesons \square Beauty mesons contain a b-quark

$$
\begin{array}{ll}
B^{+}: u \bar{b}, & B^{0}: d \bar{b} \\
B^{-}: \bar{u} b, & \bar{B}^{0}: \bar{d} b \\
B_{s}^{0}: s \bar{b}, & \bar{B}_{s}^{0}: \bar{s} b \\
B_{c}^{0}: c \bar{b}, & B_{c}^{0}: \bar{c} b
\end{array}
$$

- B meson physics have been studied extensively at BaBar, Belle, CDF, D0@Tevatron and now Belle-II, LHCb, CMS and ATLAS@LHC

Oscillations of B mesons

- Similar tests with other mesons \square Beauty mesons contain a b-quark

$$
\begin{array}{ll}
B^{+}: u \bar{b}, & B^{0}: d \bar{b} \\
B^{-}: \bar{u} b, & \bar{B}^{0}: \bar{d} b \\
B_{s}^{0}: s \bar{b}, & \bar{B}_{s}^{0}: \bar{s} b \\
B_{c}^{0}: c \bar{b}, & B_{c}^{0}: \bar{c} b
\end{array}
$$

- B meson physics have been studied extensively at BaBar, Belle, CDF, D0@Tevatron and now Belle-II, LHCb, CMS and ATLAS@LHC
- Similar tests with D mesons

Oscillations of B mesons

- Similar tests with other mesons

- Stringent constraints on new physics models provided hadronic matrix elements known

New Physics and Flavour sector

- Very sensitive to New Physics

Anomalies in Flavour Physics

- Exciting discrepancies found recently:

physicstoday					
Home	Print Edition	Daily Edition -	About	Jobs ${ }^{\text {¢ }}$	Subscribe
Democracy suffers a blow-in particle physics					
Three independent B -meson experiments suggest that the charged leptons may not be so equal after all. Steven K. Blau 17 September 2015					

CERNCOURIER

Anomalies in Flavour Physics

- Exciting discrepancies found recently:

$$
R_{K^{(*)}}=\left.\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e e\right)}\right|_{q^{2} \in\left[q_{\min }^{2}, q_{\max }^{2}\right]}
$$

Anomalies in Flavour Physics

- Exciting discrepancies found recently:

$$
R_{K^{(*)}}=\left.\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e e\right)}\right|_{q^{2} \in\left[q_{\min }^{2}, q_{\max }^{2}\right]}
$$

- Hadronic uncertainties cancel in the ratio
- Update from LHCb @Moriond 2021

$$
\& \quad R_{K^{(*)}}^{\exp }<R_{K^{(*)}}^{\mathrm{SM}}
$$

Anomalies in Flavour Physics

- Exciting discrepancies found recently:

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}
$$

- Hadronic uncertainties cancel in the ratio:
The SM prediction very precise

Anomalies in Flavour Physics

- These anomalies have generated a lot of excitement and theoretical papers to try to explain them using new physics models
- This requires a good understanding of hadronic physics see e.g. Celis, Cirigliano, E.P., Phys.Rev. D89 (2014) 013008, Phys.Rev. D89 (2014) no.9, 095014
- New measurements are planned at ATLAS, CMS (dedicated B physics run) LHCb and Belle II
- Better precision within the next decade \square match the level of precision theoretically with hadronic physics

3. Selected examples: $\eta \rightarrow 3 \pi$ and light quark mass ratio

Colangelo, Lanz, Leutwyler, E. P., PRL 118 (2017) no.2, 022001, EPJC78 (2018) no.11, 947
Review on η and η ' physics: Gan, Kubis, E.P., Tulin, ArXiv: 2007.00664[hep-ph]

Introduction

- η decay from PDG:

η DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level
	Neutral modes		
Γ_{1}	neutral modes	$(72.12 \pm 0.34) \%$	$\mathrm{~S}=1.2$
Γ_{2}	2γ	$(39.41 \pm 0.20) \%$	$\mathrm{~S}=1.1$
Γ_{3}	$3 \pi^{0}$	$(32.68 \pm 0.23) \%$	$\mathrm{~S}=1.1$
		Charged modes	
Γ_{8}	charged modes	$(28.10 \pm 0.34) \%$	$\mathrm{~S}=1.2$
Γ_{9}	$\pi^{+} \pi^{-} \pi^{0}$	$(22.92 \pm 0.28) \%$	$\mathrm{~S}=1.2$
Γ_{10}	$\pi^{+} \pi^{-} \gamma$	$(4.22 \pm 0.08) \%$	$\mathrm{~S}=1.1$

Introduction

- $\eta \rightarrow 3 \pi$ forbidden by isospin symmetry \square Unique access to $\left(m_{d}-m_{u}\right)$

Introduction

- $\eta \rightarrow 3 \pi$ forbidden by isospin symmetry \square Unique access to $\left(m_{d}-m_{u}\right)$
- $\quad M_{\eta}=547.862(117) \mathrm{MeV}$

Too low for perturbative QCD

\square Non perturbative methods

$$
\begin{aligned}
& \left\langle\pi^{+} \pi^{-} \pi_{\text {out }}^{0} \mid \eta\right\rangle \\
& =i(2 \pi)^{4} \delta^{4}\left(p_{\eta}-p_{\pi^{+}}-p_{\pi^{-}}-p_{\pi^{0}}\right) A(s, t, u)
\end{aligned}
$$

Chiral Perturbation Theory

- Chiral Perturbation Theory (ChPT): Effective field theory in the light quark sector
- Hadronic energy scale ($\left.\Lambda_{H} \sim \mathbf{1} \mathbf{~ G e V}\right) \Rightarrow$ Light mesons and their interaction
- Degrees of freedom: light mesons (Goldstone Bosons): $\boldsymbol{\pi} \boldsymbol{\pi} \boldsymbol{K}, \boldsymbol{\eta}$
- Chiral symmetry
- New parameter of expansion $\frac{\alpha_{s}(\mu)}{\pi} \leftrightharpoons \frac{p}{\Lambda_{H}}+$ small light quark masses

$$
\Rightarrow \sigma=\sigma_{0}+\left(\frac{p}{\Lambda_{H}}\right)^{2} \sigma_{2}+\left(\frac{p}{\Lambda_{H}}\right)^{4} \sigma_{4}+\ldots
$$

- Validity: $p \ll \Lambda_{H} \sim 1 \mathrm{GeV}$

$\eta \rightarrow 3 \pi$ in ChPT

- Compute the amplitude using ChPT :

$$
\Gamma_{\eta \rightarrow 3 \pi}=(\underset{\text { LO NLO NNLO }}{(66+94+\ldots+\ldots) \mathrm{eV}=(300 \pm 12) \mathrm{eV}}
$$

LO: Osborn, Wallace'70
NLO: Gasser \& Leutwyler'85
NNLO: Bijnens \& Ghorbani'07

- The Chiral series has convergence problems

Dispersive approach

- The Chiral series has convergence problems
\square Large $\pi \pi$ final state interactions

Roiesnel \& Truong'81

- Dispersive treatment :
- analyticity, unitarity and crossing symmetry
- Take into account all the rescattering effects

Why a new dispersive analysis?

- Several new ingredients:
- New inputs available: extraction $\pi \pi$ phase shifts has improved

Garcia-Martin et al'09, Colangelo et al.'11

- New experimental programs, precise Dalitz plot measurements TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)
- Many improvements needed in view of very precise data: inclusion of
- Electromagnetic effects $\left(\mathcal{O}\left(\mathrm{e}^{2} \mathrm{~m}\right)\right)$ Ditsche, Kubis, Meissner'09
- Isospin breaking effects

Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}^{0}(s)+(s-u) M_{1}^{1}(t)+(s-t) M_{1}^{1}(u)+M_{0}^{2}(t)+M_{0}^{2}(u)-\frac{2}{3} M_{0}^{2}(s)
$$

Roy analysis

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

right-hand cut
left-hand cut
Colangelo et al.'11

Results: Amplitude for $\boldsymbol{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $\mathrm{s}=\mathrm{u}$:

Light quark mass ratio extraction

- Extract the light quark mass ratio very precisely
\Rightarrow complementary to lattice determination
Shift towards lower values of quark mass ratios compared to Current Algebra result

$$
\square \frac{m_{u}}{m_{d}}=0.44 \pm 0.03
$$

$$
\eta \rightarrow 3 \pi
$$

Can be investigated and reduced at GlueX, JEF, CLAS12
ChPT
$\pi \pi$ phase shifts

Light quark mass ratio extraction

3.2 Anomalous magnetic moment of the muon

Introduction

$$
a_{\mu}=\frac{(g-2)_{\mu}}{2} \quad \begin{aligned}
& \text { Anomalous } \\
& \text { magnetic moment }
\end{aligned}
$$

- The gyromagnetic factor of the muon is modified by loop contribution
- Predicted by Dirac to be 2
- Schwinger computed the first order correction

QED

Experimental result

$$
\mathrm{a}_{\mu}(\mathrm{SM})=0.00116591810(43) \rightarrow 368 \mathrm{ppb}
$$

- Individual tension with SM
- BNL: 3.7б
- FNAL: 3.3 σ

What is the SM prediction?

- Not very easy to obtain at this level of precision


```
Weak
```


Muon "(g-2) Theory Initiative" led by A. El-Khadra and C. Lehner White Paper: Phys.Rept. 887 (2020) 1-166,

ArXiv: 2006.04822 [hep-ph]

What is the SM prediction?

- Theoretical Prediction:

Contribution	Result in 10^{-10} units
QED(leptons)	11658471.893 ± 0.010
HVP(leading order)	693.1 ± 4.0
HVP(higher order)	-8.59 ± 0.71
HLBL	9.2 ± 1.8
EW	15.4 ± 0.1
Total	11659181.0 ± 4.3

On the importance of hadronic contributions

Muon g-2 measurements sensitivity
From D. Hertzog

a in units of 10^{-11}

On the importance of hadronic contributions

Muon g-2 measurements sensitivity

On the importance of hadronic contributions

On the importance of hadronic contributions

Muon g-2 measurements sensitivity

On the importance of hadronic contributions

- Theoretical Prediction:

Contribution	Result in 10^{-10} units
QED(leptons)	11658471.893 ± 0.010
HVP(leading order)	693.1 ± 4.0
HVP(higher order)	-8.59 ± 0.71
HLBL	9.2 ± 1.8
EW	15.4 ± 0.1
Total	11659181.0 ± 4.3

- Important contribution comes from virtual hadrons in the loop!
- Tackled using :
- Models
- Dispersion Relations
- Lattice QCD

Computation of HVP using data

- Hadronic contribution cannot be computed from first principles due to low-energy hadronic effects
- Use analyticity + unitarity \Rightarrow real part of photon polarisation function from dispersion relation over total hadronic cross section data

- Low energy contribution dominates : $\sim 75 \%$ comes from $\mathrm{s}<(1 \mathrm{GeV})^{2}$ $\square \pi \pi$ contribution extracted from data

Computation of HVP using data

- Huge 20-years effort by experimentalists and theorists to reduce error on lowest-order hadronic part
> Improved $\mathrm{e}^{+} \mathrm{e}^{-}$cross section data from Novisibirsk (Russia)
$>$ More use of perturbative QCD
> Technique of "radiative return" allows to use data from Φ and B factories
> Isospin symmetry allows us to also use τ hadronic spectral functions

But still some progress need to be done
> Inconsistencies τ vs. e+e-: Isospin corrections?
> Inconsistencies between ISR and direct data:
Radiative corrections?
> Lattice Calculation?
New data expected from KLOE2, Belle-II, BES-III?

Computation of HVP using data

Fig. 13. The $\pi^{+} \pi$ cross section from the KLOE combination compared to the BABAR, CMD-2, SND, and BESIII data points in the $0.6-0.9 \mathrm{GeV}$ range [82]. The KLOE combination is represented by the yellow band. The uncertainties shown are the diagonal statistical and systematic uncertainties summed in quadrature.
Source: Reprinted from Ref. [82].

Computation of HVP using data

Comparison of results for $a_{\mu}^{\operatorname{HVP}, L 0}[\pi \pi]$, evaluated between 0.6 GeV and 0.9 GeV for the various experiments..

Computation of HVP using lattice QCD

- Very impressive progress using lattice QCD within the last 5 years

(0.75\%)

HVP (BMW-20): $a_{\mu}=7087(53) \times 10^{-10}$
(2.6\%)

HVP (Lattice): $a_{\mu}=7116(184) \times 10^{-11}$
(0.58\%)

HVP (pheno): $a_{\mu}=6931(40) \times 10^{-11}$

Lattice - pheno ≈ 18.5 (18.8)
BMW-20 - pheno ≈ 15.6 (6.6)

Computation of HVP using lattice QCD

- Very impressive progress using lattice QCD within the last 5 years

(0.75\%)

HVP (BMW-20): $a_{\mu}=7087(53) \times 10^{-10}$
(2.6\%)

HVP (Lattice): $a_{\mu}=7116(184) \times 10^{-11}$
(0.58\%)

HVP (pheno): $a_{\mu}=6931(40) \times 10^{-11}$

Lattice - pheno ≈ 18.5 (18.8)
BMW-20 - pheno ≈ 15.6 (6.6)

Computation of HLbL using data

- Very impressive progress using dispersive techniques and data in particular in pion pole contribution

$\begin{array}{cc}a_{\mu}^{P \text { ppole }}=\left(\frac{\alpha}{\pi}\right)^{3} \int d Q_{1} d Q_{2} d \tau\left[w_{1}\left(Q_{1}, Q_{2}, \tau\right) F_{P \gamma^{*} \gamma^{*}}\left(-Q_{1}^{2},-Q_{3}^{2}\right) F_{P \gamma^{*} \gamma^{*}}\left(-Q_{2}^{2}, 0\right)\right. \\ \Rightarrow & \text { Weight functions }\end{array}$

Computation of HLbL using data

- Weight contribution \square low energy dominates

$$
F_{\pi^{0} \gamma^{*} \gamma^{*}}=F_{\pi^{0} \gamma^{*} \gamma^{*}}^{\mathrm{disp}}+F_{\pi^{0} \gamma^{*} \gamma^{*}}^{\mathrm{eff}}+F_{\pi^{0} \gamma^{*} \gamma^{*}}^{\text {asym }}
$$

Use experimental data with dispersive analysis to reconstruct from dominant low-energy singularities (2/3 pions intermediate states)

$$
F_{\pi^{0} \gamma^{*} \gamma^{*}}^{\mathrm{disp}}\left(q_{1}^{2}, q_{2}^{2}\right)=F_{v s}^{\mathrm{disp}}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{v s}^{\mathrm{disp}}\left(q_{2}^{2}, q_{1}^{2}\right)
$$

Computation of HLbL using data

Figure 59: Left: BABAR data points [108] with statistical errors (inner bars) and statistical and systematic combined (outer bars) in black, together with the CA prediction including errors (blue bands). Right: The analogous plot for the diagonal $Q^{2} F_{\eta^{\prime} \gamma^{*} \gamma^{*}}\left(-Q^{2},-Q^{2}\right) \mathrm{TFF}$.

Computation of HLbL using data

- Input for hadronic light-by-light scattering

Colangelo, Hoferichter, Procura, Stoffer'14,etc

Computation of HLbL using data

| Contribution | PdRV(09) [475] | $\mathrm{N} / \mathrm{JN}(09)[476,596]$ | $\mathrm{J}(17)[27]$ | Our estimate |
| :---: | ---: | ---: | ---: | ---: | ---: |
| $\pi^{0}, \eta, \eta^{\prime}$-poles | $114(13)$ | $99(16)$ | $95.45(12.40)$ | $93.8(4.0)$ |
| π, K-loops/boxes | $-19(19)$ | $-19(13)$ | $-20(5)$ | $-16.4(2)$ |
| S-wave $\pi \pi$ rescattering | $-7(7)$ | $-7(2)$ | $-5.98(1.20)$ | $-8(1)$ |
| subtotal | $88(24)$ | $73(21)$ | $69.5(13.4)$ | $69.4(4.1)$ |
| scalars | - | - | - | $-1(3)$ |
| tensors | - | - | $1.1(1)$ | $6(6)$ |
| axial vectors | $15(10)$ | $22(5)$ | $7.55(2.71)$ | $15(10)$ |
| u, d, s-loops / short-distance | - | $21(3)$ | $20(4)$ | $3(1)$ |
| c-loop | 2.3 | - | $2.3(2)$ | $92(19)$ |
| total | $105(26)$ | $116(39)$ | $100.4(28.2)$ | |

Table 15: Comparison of two frequently used compilations for HLbL in units of 10^{-11} from 2009 and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

Very impressive progress since 7 years ago to improve the HLbL
determination

Computation of HLbL on the lattice

- Not many calculations yet: it is very challenging! The agreement with analytical results is good.
3.3 Axial form factor of the nucleon and neutrino physics

Introduction: Neutrino Cross Section

* Accurate neutrino measurements:
- Mass hierarchy
- Oscillations
- CP violation
- Beyond 3 flavours?
* Precise knowledge of \boldsymbol{v} numbers

\Rightarrow Neutrino Cross Section
* Need precise $\mathrm{E}_{\boldsymbol{v}}$ reconstruction
\square New research area developed at IU

Studying Oscillations

- Experimentally, important effort to study the neutrino oscillations
\Rightarrow many experiments in the world!

- In the US: a priority \Rightarrow LBNE (Long Base Line Neutrino Experiment) DUNE (Deep Underground Neutrino Experiment)

Detection

- Neutrino beams created at Fermilab

- Neutrinos detected 810 miles away in South Dakota in Liquid Argon detectors

Cross section

- In Liquid Argon detectors interaction of a neutrino with nucleus \longmapsto Compute cross section
- But not so easy! $\mathrm{E}_{\mathrm{v}} \sim 1 \mathrm{GeV}$ \Rightarrow Non perturbative QCD!

Argon, fat nucleus (18 protons, 22 neutrons) several processes:

- Nucleon form factors
- Transport inside nucleus
- To be computed for the electron neutrino as well!

Cross section : different regions

NB: For illustration only

* Different Energy regions:
- Quasi-Elastic + FSI

Cross section : different regions

NB: For illustration only

complex nucleus:
${ }^{40} \mathrm{Ar},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \ldots$

* Different Energy regions:
- Resonance-pion production

Cross section : different regions

NB: For illustration only

* Different Energy regions:
- Deep Inelastic scattering

Cross section : different regions

* Difficulty to describe the hadronization \& few body effects and disentangle both effects
* From quarks to protons and neutrons \rightarrow Form factors
* From protons and neutrons to nucleus

3.2 Axial form factor and Neutrino Physics

Hadronic matrix element involved:
$\left\langle p\left(p^{\prime}\right)\right| J_{W}^{+\mu}|n(p)\rangle \propto \bar{u}^{p}\left(p^{\prime}\right)\left\{\gamma^{\mu} F_{1}^{V}\left(q^{2}\right)+\frac{i}{2 m_{N}} \sigma^{\mu \nu} q_{\nu} F_{2}^{V}\left(q^{2}\right)+\gamma^{\mu} \gamma_{5} F_{A}\left(q^{2}\right)+\frac{1}{m_{N}} q^{\mu} \gamma_{5} F_{P}\left(q^{2}\right)\right\} u^{(n)}(p)$

- $F_{1}^{V}\left(q^{2}\right)$ and $F_{2}^{V}\left(q^{2}\right)$ can be extracted from precision electron data at Mainz (Bernauer et al, A1 coll.'06) and JLab
- $F_{P}\left(q^{2}\right)$ the pseudo-scalar Form Factor is related to $F_{A}\left(q^{2}\right)$
- The main unknown is $F_{A}\left(q^{2}\right)$
- $F_{A}\left(q^{2}\right)$ provides the largest contribution to the QE cross section at 1 GeV

Cannot be determined from electron scattering data

3.2 Axial form factor and Neutrino Physics

* Old problem
* Traditionally it was assumed to follow a simplistic parametrisation

$$
F_{A}\left(q^{2}\right)=\frac{F_{A}(0)}{\left(1-\frac{q^{2}}{M_{A}^{2}}\right)^{2}} \quad \text { the dipole parametrisation }
$$

- The parameters are $g_{A} \equiv F_{A}(0)$ and the axial mass M_{A}
\rightarrow determined using a combination of processes
- Neutrino nucleon cross section: $\sigma(\nu N \rightarrow \ell N)$
- Pion electroproduction $\gamma^{\star}\left(k^{2}\right)+N_{1}\left(p_{1}\right) \rightarrow \pi^{a}(q)+N_{2}\left(p_{2}\right)$

3.2 Axial form factor and Neutrino Physics

* Up to recently good agreement between all determination of F_{A}
A. Liesenfeld et al, MAMI'99

$$
\nu N \rightarrow \ell N
$$

Argonne (1969)
Argonne (1973) CERN (1977)
Argonne (1977) CERN (1979) BNL (1980) BNL (1981) Argonne (1982) Fermilab (1983) BNL (1986) BNL (1987) BNL (1990) Average

$$
M_{A}=1.026 \pm 0.021 \mathrm{GeV}
$$

$$
\gamma^{\star}\left(k^{2}\right)+N_{1}\left(p_{1}\right) \rightarrow \pi^{a}(q)+N_{2}\left(p_{2}\right)
$$

Frascati (1970)
Frascati (1970) GEn=0
Frascati (1972)
DESY (1973)
Daresbury (1975) SP
Daresbury (1975) DR
Daresbury (1975) FPV Daresbury (1975) BNR Daresbury (1976) SP Daresbury (1976) DR Daresbury (1976) BNR DESY (1976)
Kharkov (1978)
Olsson (1978)
Saclay (1993)
MAMI (1999)
Average

3.2 Axial form factor and Neutrino Physics

* Recently very significant progress on two fronts:
- Experimentally many new measurements: MiniBooNE, K2K, MINERvA, NOMAD
Double Differential Cross Section $\left(\mathrm{cm}^{2} / \mathrm{GeV}^{2}\right)$

Reference	$m_{A}[\mathrm{GeV}]$	$\left\langle r_{A}^{2}\right\rangle\left[\mathrm{fm}^{2}\right]$
K2K [10]	1.20 ± 0.12	0.32 ± 0.06
NOMAD [11]	1.05 ± 0.06	0.42 ± 0.05
MiniBoonNE [12]	1.35 ± 0.17	0.26 ± 0.06
MINERvA [13]	0.99	0.48
MINOS [14]	$1.23_{-0.09}^{+0.13}$	$0.31_{-0.05}^{+0.07}$

$$
\begin{gathered}
F_{A}\left(q^{2}\right)=F(0)\left(1+\frac{1}{6}\left\langle r_{A}^{2}\right\rangle q^{2}+\mathcal{O}\left(q^{4}\right)\right) \\
\left\langle r_{A}^{2}\right\rangle=\frac{12}{M_{A}^{2}}
\end{gathered}
$$

3.2 Axial form factor and Neutrino Physics

* Recently very significant progress on two fronts:
- Lattice QCD results on $g_{A} \equiv F_{A}(0)$ and $F_{A}\left(q^{2}\right)$

Hill, Kammel, Marciano, and Sirlin'18

3.2 Axial form factor and Neutrino Physics

* Recently very significant progress on two fronts:
- Lattice QCD results on $g_{A} \equiv F_{A}(0)$ and $F_{A}\left(Q^{2}\right)$

Bridging Lattice QCD and neutrino measurements

* Connecting predicted $F_{A}\left(q^{2}\right)$ to measured total and differential cross sections
* Creating a physically motivated analytical parametrisation that can be used to assist and complement the lattice simulations (beyond the dipole)

Friedland, Gonzalez-Solis, E.P., Quirion, Ristow in preparation

Which value of \mathbf{Q}^{2} impact neutrino data?

Alexandrou et al., ETMC'17

* Which Q^{2} range is important for neutrino XS data?
* If one changes the functional form of F_{A}, how does that impact the XS prediction?

Which value of \mathbf{Q}^{2} impact neutrino data?

* Composition of MiniBooNE Cross Section

* At $\mathrm{E} \sim 0.5 \mathrm{GeV}$ the XS comes from $\mathrm{Q}^{2}<0.6 \mathrm{GeV}^{2}$

Which value of \mathbf{Q}^{2} impact neutrino data?

- Composition of MiniBooNE Cross Section

Neutrino Cross Section: $M_{A}=1.35 \mathrm{GeV}$

* At E $\sim 0.5 \mathrm{GeV}$ the XS comes from $\mathrm{Q}^{2}<0.6 \mathrm{GeV}^{2}$
* At E $\sim 1 \mathrm{GeV}, \sim 40 \%$ contributions from $0.6 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<2 \mathrm{GeV}^{2}$

Which value of \mathbf{Q}^{2} impact neutrino data?

- Composition of MINERvA Cross Section

Neutrino Cross Section: $M_{A}=1.35 \mathrm{GeV}, \theta<20^{\circ}$

* The situation is similar, although E_{v} is higher the relevant values are

$$
\mathrm{Q}^{2}<2 \mathrm{GeV}^{2}
$$

Prospects for the future

- Processus involved:
- Quasi elastic scattering
* One pion production through resonances
* Non-resonant pion production

* Deep Inelastic Scattering
* Final State Interactions
- So far we have considered only QE scattering but many more processes involved that need to be understood and requires hadronic physics \Rightarrow multi-year program

4. Conclusion and Outlook

4.1 Conclusion

- Studying fundamental symmetries and testing the Standard Model is crucial to understand fundamental laws of physics and new physics phenomena
- The precision / intensity frontier plays a key role in the search for the "new Standard Model" and its symmetries
- Broad and vibrant experimental program
- K, D and B mesons measurements more accurate \Rightarrow require inputs from hadronic physics
- To reach this quest, studying interactions of quarks, leptons and even neutrinos with high precision requires a precise knowledge of hadronic physics: directly for quark interactions or indirectly for leptons and neutrinos
- We have enter a precision era in all domains of particle physics requiring an unprecedent effort in taming the hadronic uncertainties
- Hadronic physics relies on non-perturbative techniques to treat QCD at low energies: \square synergies between lattice QCD and analytical methods: ChPT, dispersion relations, etc.

4.1 Conclusion

- In this lecture, 3 examples:
- $\eta \rightarrow 3 \pi$ allows to extract the light quark mass ratios with very good precision
- Studying the anomalous magnetic moment of the muon allows to test the Standard Model very precisely: at the moment there is a discrepancy between SM prediction and experimental measurements. \square We need to work hard on theory front (lattice QCD, analytical methods) and experimental from (g-2 experiment at FNAL and at JPARC) to understand the origin of the discrepancy Is it a hint of New Physics?
- To measure the neutrino properties one needs to know the neutrino nucleus cross section with a very good accuracy.
- Many more examples where hadronic physics is of prime importance to be able to interpret the very precise experimental measurements:
Extraction of CKM mixing parameters, EDMs, Neutrinoless double-beta decays, Neutron decay experiments, ...
- The hope is to try to understand the big open questions

3. Back up

Proton

- Let us consider the proton: it is not a fundamental particle, it is made of 3 quarks

Electroweak Interactions: Charged Currents

Experimentally: electroweak interaction exhibits interesting characteristics:

- The doublet partners of the up, charm and top quarks appear to be mixtures of the three quarks with charge $-1 / 3$ \Rightarrow the weak eigenstates are different than the mass eigenstates:

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Weak Eigenstates CKM Matrix Mass Eigenstates
Unitary 3×3 Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

Application of EW interactions

- Study of the process: $\nu_{e}+e^{-} \rightarrow v_{e}+e^{-}$
- Can it go through strong, EM, weak interactions?
- How many Feynman diagrams at tree level?

Application of EW interactions

- Study of the process: $\nu_{e}+e^{-} \rightarrow V_{e}+e^{-}$
- Involve leptons only \Rightarrow no strong interaction
- The neutrinos are electrically neutral \Rightarrow no EM interaction \Rightarrow Only Weak interactions!
- How many Feynman diagrams?

2.2 Flavour Physics

Description of the weak interactions:

Probing the CKM mechanism

- The CKM Mechanism source of Charge Parity Violation in SM
- Unitary 3×3 Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Weak Eigenstates CKM Matrix Mass Eigenstates

3.1 Probing the CKM mechanism

- The CKM Mechanism source of Charge Parity Violation in SM
- Unitary 3×3 Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

Weak Eigenstates CKM Matrix Mass Eigenstates

- Fully parametrized by four parameters if unitarity holds: three real parameters and one complex phase that if non-zero results in CPV
- Unitarity can be visualized using triangle equations, e.g.

$$
V_{C K M} V_{C K M}^{\dagger}=1 \quad \rightarrow \quad V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$

CKM picture over the years: from discovery to precision

Existence of $C P V$ phase established in 2001 by BaBar \& Belle

- Picture still holds 15 years later, constrained with remarkable precision
- But: still leaves room for new physics contributions

3.1 Probing the CKM mechanism

2.2 Oscillations of Kaons

- Similar tests with other mesons

SM
BSM

CDF, D0'06, LHCb'11
$\Rightarrow \mathrm{CP}$ violation in D decays LHCb'19

- Stringent constraints on new physics models provided hadronic matrix elements known

Lattice results for \mathbf{B}_{K}

$$
B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.557 \pm 0.007 \quad, \quad \hat{B}_{K}=0.763 \pm 0.010 \quad\left(N_{f}=2+1\right)
$$

Flavianet Lattice Averaging Group

$\mathbf{B} \rightarrow \mathbf{K}^{*} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \rightarrow \mathbf{K} \pi \mu^{+} \boldsymbol{\mu}^{-}$

$$
\begin{aligned}
\frac{1}{\mathrm{~d} \Gamma / d q^{2}} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
q^{2}=S_{\mu^{+} \mu^{-}} & +S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{L}\left(1-F_{L}\right)}}: \quad & \left.S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

- Build an observable the less sensitive possible to hadronic uncertainties $\square P 5^{\prime}$ Only at LO

DHMV: Descotes-Genon et al. '15 ASZB:

- But new physics contributions involve hadronic physics!

$\mathbf{R}_{\mathrm{K}}, \mathbf{R}_{\mathrm{K}^{*}}$

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Hadronic uncertainties cancel in the ratio

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Hadronic uncertainties cancel in the ratio
- Update from LHCb and Belle
* Original LHCb result (2.6б):
$R_{K}=0.745_{-0.074}^{+0.090}($ stat $) \pm 0.036$ (syst)

LHCb 1406.6482

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Hadronic uncertainties cancel in the ratio
- Update from LHCb and Belle
* Original LHCb result (2.6б):
$R_{K}=0.745_{-0.074}^{+0.090}($ stat $) \pm 0.036$ (syst)
* New result including data until 2016 (2.5 σ):

$$
R_{K}=0.846_{-0.054}^{+0.060}+0.016
$$

$\mathbf{R}_{\mathrm{K}}, \mathbf{R}_{\mathrm{K} *}$: Belle results

$\mathrm{R}_{\mathrm{D}}, \mathbf{R}_{\mathrm{D}^{*}}$: recent update from Belle

Significance reduced from 4.1 to 3.1σ

$$
\begin{aligned}
\mathcal{R}(D) & =0.307 \pm 0.037 \pm 0.016 \\
\mathcal{R}\left(D^{*}\right) & =0.283 \pm 0.018 \pm 0.014
\end{aligned}
$$

(Belle 2019: 1.2б)

Leptons decays

Contribution to $(\mathrm{g}-2)_{\mu}$

Hoecker'11

QED

Hadronic

> Weak

SUSY... ?
... or some unknown
type of new physics?

... or no effect on a_{μ}, but new physics at the LHC? That would be interesting as well !!

Need to compute the SM prediction with high precision! \square Not so easy! Hadrons enter virtually through loops!

2.1 Quark masses

- Quark masses fundamental parameters of the QCD Lagrangian

$$
\square \mathcal{C}_{\varrho C D}=-\frac{1}{4} G_{a \nu}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- No direct experimental access to quark masses due to confinement!
- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks

Contrary to naïve expectation, most of its mass comes from strong force

Only 1% of its mass comes from the quark masses (Coupling of the quarks to the Higgs boson)

2.1 Quark masses

- Quark masses fundamental parameters of the QCD Lagrangian

$$
\Rightarrow \quad \mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- No direct experimental access to quark masses due to confinement!
- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks

2.6 Why a new dispersive analysis?

- Several new ingredients:
- New inputs available: extraction $\pi \pi$ phase shifts has improved

> Ananthanarayan et al'01, Colangelo et al'01
> Descotes-Genon et al'01
> Kaminsky et al'01, Garcia-Martin et al'09

- New experimental programs, precise Dalitz plot measurements

TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)

- Many improvements needed in view of very precise data: inclusion of
- Electromagnetic effects $\left(\mathcal{O}\left(\mathrm{e}^{2} \mathrm{~m}\right)\right)$ Ditsche, Kubis, Meissner'09
- Isospin breaking effects

2.7 Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$

- One truncates the partial wave expansion : \Rightarrow Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$

3 BWs ($\left.\rho^{+}, \rho^{-}, \rho^{0}\right)+$ background term
\Rightarrow Improve to include final states interactions

2.7 Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$

- One truncates the partial wave expansion : \Rightarrow Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$

- Use a Khuri-Treiman approach or dispersive approach

\RightarrowRestore 3 body unitarity and take into account the final state interactions in a systematic way

2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to NNLO $\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}

2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}^{0}(s)+(s-u) M_{1}^{1}(t)+(s-t) M_{1}^{1}(u)+M_{0}^{2}(t)+M_{0}^{2}(u)-\frac{2}{3} M_{0}^{2}(s)
$$

Roy analysis

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

right-hand cut left-hand cut

2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

- Relation of dispersion to reconstruct the amplitude everywhere:

$$
\begin{aligned}
& \begin{array}{|l}
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right) \\
\text { Omnès function }
\end{array} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right] \\
& \text { Gasser \& Rusetsky'18 }
\end{aligned}
$$

- $P_{\mathrm{l}}(\mathrm{s})$ determined from a fit to NLO ChPT + experimental Dalitz plot

$2.9 \boldsymbol{\eta} \rightarrow 3 \pi$ Dalitz plot

- In the charged channel: experimental data from WASA, KLOE, BESIII

- New data expected from CLAS and GlueX with very different systematics

2.10 Results: Amplitude for $\boldsymbol{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $\mathrm{s}=\mathrm{u}$:

2.10 Results: Amplitude for $\boldsymbol{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $t=u$:

2.11 Z distribution for $\boldsymbol{\eta} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- The amplitude squared in the neutral channel is

MAMI

2.12 Comparison of results for α

2.13 Quark mass ratio

$Q=22.1 \pm 0.7$

- No systematics taken into account \Rightarrow collaboration with experimentalists

2.14 Light quark masses

- Smaller values for $Q \Rightarrow$ smaller values for m_{s} / m_{d} and m_{d} / m_{d} than LO ChPT

2.14 Light quark masses

Formulation of QCD

Dynamics: The Lagrangien

- Build all the invariants under $S U(3)_{C}$ with the quarks

$$
\Rightarrow \mathcal{L}_{0}=\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-m_{k}\right) q_{k}
$$

invariant under global $\mathrm{SU}(3)_{\mathrm{c}}: q_{k}^{\alpha} \rightarrow\left(q_{k}^{\alpha}\right)^{\prime}=U^{\alpha}{ }_{\beta} q_{k}^{\beta}$
with $U=\exp \left(-i g_{s} \frac{\lambda_{a}}{2} \theta_{a}\right)$ and λ_{a} the generators of $S U(3)_{\mathrm{c}}:\left[\lambda^{a}, \lambda^{b}\right]=\mathbf{2 i f} \boldsymbol{f}^{a b c} \lambda^{c}$

- Gauge the theory: $\mathrm{SU}(3)_{\mathrm{C}} \rightarrow$ local $\Rightarrow \theta_{a} \rightarrow \theta_{a}(x)$
$\Rightarrow 8$ different independent gauge fields: G_{μ}^{a} the gluons lele

$$
\partial_{\mu} q_{k} \rightarrow D_{\mu} q_{k} \equiv[\partial_{\mu}-i g_{s} \underbrace{\frac{\lambda_{a}}{2} G_{\mu}^{a}(x)}_{G_{\mu}(x)}] q_{k}
$$

1.4 Strong interaction

- Looking for new physics in hadronic processes \Rightarrow not direct access to quarks due to confinement

- Dispersion relations
- Numerical simulations on the lattice
- Effective field theory Ex: ChPT for light quarks

Dispersive approach

- Dispersion Relations: extrapolate ChPT at higher energies

Anisovich \& Leutwyler'96

- Important corrections in the physical region taken care of by the dispersive treatment!

Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$

- One truncates the partial wave expansion : \Rightarrow Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$

3 BWs ($\left.\rho^{+}, \rho^{-}, \rho^{0}\right)+$ background term
\Rightarrow Improve to include final states interactions

Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$

- One truncates the partial wave expansion : \Rightarrow Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$

- Use a Khuri-Treiman approach or dispersive approach Restore 3 body unitarity and take into account the final state interactions in a systematic way

Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
> \boldsymbol{M}_{I} isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to NNLO $\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}

Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

- Relation of dispersion to reconstruct the amplitude everywhere:

$$
\begin{aligned}
& \begin{array}{|l}
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right) \\
\text { Omnès function }
\end{array} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right] \\
& \text { Gasser \& Rusetsky'18 }
\end{aligned}
$$

- $\quad P_{l}(s)$ determined from a fit to NLO ChPT + experimental Dalitz plot

$\boldsymbol{\eta} \rightarrow 3 \pi$ Dalitz plot

- In the charged channel: experimental data from WASA, KLOE, BESIII

- New data expected from CLAS and GlueX with very different systematics

Which value of \mathbf{Q}^{2} impact neutrino data?

* The experimental results point towards a larger value of the axial form factor $\quad M_{A} \sim 1.35 \mathrm{GeV}$
* If true, the value of M_{A} saturates the cross section leaving little room for multi nucleon effects
- Is the dipole physically motivated?

$$
F_{A}\left(q^{2}\right)=\frac{F_{A}(0)}{\left(1-\frac{q^{2}}{M_{A}^{2}}\right)^{2}}
$$

The parametrisation has an impact on different q^{2} dependence ranges on the neutrino data

Improving the Form Factor parametrization

* For intermediate energy region: Can try to use VMD
- Analytical structure of FF (e.g. F_{1} or F_{A})

Photon or W sees proton through all hadronic states (with vector or axial-vector Quantum Number)

Processes in unphysical region $\mathrm{t}<4 \mathrm{~m}_{\mathrm{N}}{ }^{2}$

- Resonances (Vector Mesons)

For F_{A} (Axial Vector Mesons)
a_{1} (1230) and $\mathrm{a}_{1}{ }^{\prime}(1647)$
Masjuan et al.'12

$$
F_{A}(t)=g_{A} \frac{m_{a_{1}}^{2} m_{a_{1}^{\prime}}^{2}}{\left(m_{a_{1}}^{2}-t\right)\left(m_{a_{1}}^{2}-t\right)}
$$

Improving the Form Factor parametrization

* For intermediate energy region: Can try to use VMD, e.g. EM FF
- Dispersion Relations

- Use spectral function from theory or from experiment

Frazer \&Fulco'60, Hohler et al'75

$$
F_{i}(t)=\int_{t_{\mathrm{thr}}}^{\infty} \frac{d t^{\prime}}{\pi} \frac{\operatorname{Im} F_{i}\left(t^{\prime}\right)}{t^{\prime}-t-i 0}
$$

Improving the Form Factor parametrization

* How to connect to the nucleon?

$$
F_{A}\left(q^{2}\right)=g_{A} \cdot f_{A \rightarrow 3 \pi}\left(q^{2}\right)
$$

\rightarrow Does not work!

