## Fundamental Symmetries

Emilie Passemar*<br>Indiana University/Jefferson Laboratory<br>National Nuclear Physics Summer School (NNPSS2021)<br>UNAM, Mexico \& IU, Bloomington, June 21, 2021

*Supported by NSF

## Outline :

1. Introduction and Motivation
2. The Standard Model
3. Selected examples
4. $\eta \rightarrow 3 \pi$ and light quark mass ratio
5. Anomalous magnetic moment of the muon
6. Axial form factor of the nucleon and neutrino physics
7. Conclusion and outlook

# 1. Introduction and Motivation 

### 1.1 The Standard Model

- Particle and Nuclear Physics
- extract fundamental parameters of Nature on the smallest scale
- test our understanding of Laws of Nature


### 1.1 Precise test of the Standard Model

- Particle and Nuclear Physics
- extract fundamental parameters of Nature at Quantum Level
- test our understanding of Laws of Nature
- In Chemistry our knowledge summarized by Mendeleev table of chemical elements



### 1.1 The Standard Model

- Particle and Nuclear Physics
- extract fundamental parameters of Nature at Quantum Level
- test our understanding of Laws of Nature
- In particle physics a simpler table made of leptons and quarks

| Crystal Molecule | Atom | Atomic Nucleus | Elementary Particles |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Nuclei | Hadrons <br> Mesons <br> Baryons <br> Proton Neutron | Leptons $\mathbf{e}, \mu, \tau, v_{\mathbf{e}}, v_{\mu}, v_{\tau}$ <br> Pointlike <br> Quarks <br> u,c,d,s,b,(t) |
| 1 cm | $10^{-8} \mathrm{~cm}$ | $10^{-12} \mathrm{~cm}$ | $10^{-13} \mathrm{~cm}$ | $?$ |

### 1.1 The Standard Model

- In particle physics a simpler table made of leptons and quarks: the degrees of freedom

- 3 forces: electromagnetic, weak and strong forces


### 1.1 The Standard Model

Governed by gauge symmetry principle


Strong force
Unified Electro-weak interactions
Introduce massless gauge bosons (force carriers)


### 1.1 The Standard Model

# ELEMENTARY PARTICLES 

## Yukawa interaction

 (matter-Higgs)

Massive fermions after EWSB

The mediators of weak interaction (W, Z) become massive through the Higgs Mechanism $\Rightarrow$ one scalar particle remains in the spectrum: H

### 1.2 Challenges



- Searching physics beyond the Standard Model:
- Are there new forces besides the 3 gauge groups?
- Are there new particles?
- A more profound understanding of the origin of this table?
- Origin of matter/anti-matter asymmetry
- Origin of dark matter
- One type of new physics already discovered: neutrino masses


### 1.2 Challenges



- Searching physics beyond the Standard Model:
- Are there new forces besides the 3 gauge group?
- Are there new particles?
- A more profound understanding of the origin of this table?
- Origin of matter/anti-matter asymmetry
- Origin of dark matter
- One type of new physics already discovered: neutrino masses
- In this quest it is essential to have a robust understanding of Hadronic Physics


### 1.2 Challenges



- Searching physics beyond the Standard Model:
- Are there new forces besides the 3 gauge group?
- Are there new particles?
- A more profound understanding of the origin of this table?
- Origin of matter/anti-matter asymmetry
- Origin of dark matter
- One type of new physics already discovered: neutrino masses
- In this quest it is essential to have a robust understanding of Hadronic Physics
- This is true for quarks and leptons and even for neutrinos!


## 2. The Standard Model

See A. Pich, 1201.0537 Halzen \& Martin, Quarks \& Leptons

### 2.1 Introduction

- In particle physics a simpler table made of leptons and quarks: the degrees of freedom


$$
\begin{aligned}
& \stackrel{-}{\circ}\binom{\nu_{\mathrm{e}}}{\mathrm{e}} \quad\binom{\nu_{\mu}}{\mu} \\
& \binom{\nu_{\tau}}{\boldsymbol{\tau}} \stackrel{\sum}{\sum_{\varnothing}} \\
& \begin{array}{c}
\underset{\omega}{\stackrel{ \pm}{\omega}} \\
\underset{\omega}{\stackrel{\rightharpoonup}{\omega}}
\end{array}\binom{\boldsymbol{u}}{\boldsymbol{d}} \\
& \binom{c}{s} \\
& \binom{t}{b} \begin{array}{l}
\substack{s \\
i \\
i n}
\end{array}
\end{aligned}
$$

- 3 forces: electromagnetic, weak and strong forces
2.2 Electromagnetic Interactions


### 2.2 Electromagnetic Interactions: Introduction

- In particle physics a simpler table made of leptons and quarks: the degrees of freedom

- 3 forces: electromagnetic, weak and strong forces


## Theoretical Formulation

- Lagrangian describing a free Dirac fermion:

$$
\mathcal{L}_{0}=i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)
$$

## Theoretical Formulation

- Lagrangian describing a free Dirac fermion:

$$
\mathcal{L}_{0}=i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)
$$

- $\mathcal{L}_{0}$ is invariant under global $\mathrm{U}(1)$ transformations $\psi(x) \rightarrow \psi^{\prime}(x) \equiv \exp (i Q \theta) \psi(x)$ with $Q \theta$ is an arbitrary real constant


## Theoretical Formulation

- Lagrangian describing a free Dirac fermion:

$$
\mathcal{L}_{0}=i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)
$$

- $\mathcal{L}_{0}$ is invariant under global $\mathrm{U}(1)$ transformations

$$
\psi(x) \rightarrow \psi^{\prime}(x) \equiv \exp (i Q \theta) \psi(x) \text { with } Q \theta \text { is an arbitrary real constant }
$$

- Gauge principle: global $\mathrm{U}(1)$ transformations $\rightarrow$ local, i.e., space-time dependent $\theta \rightarrow \theta(x)$

$$
\partial_{\mu} \psi(x) \xrightarrow{U(1)} \quad \exp \{i Q \theta\}\left(\partial_{\mu}+i Q \partial_{\mu} \theta\right) \psi(x)
$$

- $\mathcal{L}_{0}$ is no longer invariant !


## Theoretical Formulation

- Lagrangian describing a free Dirac fermion:

$$
\mathcal{L}_{0}=i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)
$$

- $\mathcal{L}_{0}$ is invariant under global $\mathrm{U}(1)$ transformations

$$
\psi(x) \rightarrow \psi^{\prime}(x) \equiv \exp (i Q \theta) \psi(x) \text { with } Q \theta \text { is an arbitrary real constant }
$$

- Gauge principle: global $\mathrm{U}(1)$ transformations $\rightarrow$ local, i.e., space-time dependent $\theta \rightarrow \theta(x)$

$$
\partial_{\mu} \psi(x) \xrightarrow{U(1)} \quad \exp \{i Q \theta\}\left(\partial_{\mu}+i Q \partial_{\mu} \theta\right) \psi(x)
$$

- $\mathcal{L}_{0}$ is no longer invariant ! $\square$ Add an extra piece to the Lagrangian


## Theoretical Formulation

- Lagrangian describing a free Dirac fermion:

$$
\mathcal{L}_{0}=i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)
$$

- $\mathcal{L}_{0}$ is invariant under global $\mathrm{U}(1)$ transformations $\psi(x) \rightarrow \psi^{\prime}(x) \equiv \exp (i Q \theta) \psi(x)$ with $Q \theta$ is an arbitrary real constant
- Gauge principle: global $\mathrm{U}(1)$ transformations $\rightarrow$ local, i.e., space-time dependent $\theta \rightarrow \theta(x)$
$\partial_{\mu} \psi(x) \quad \xrightarrow{U(1)} \exp \{i Q \theta\}\left(\partial_{\mu}+i Q \partial_{\mu} \theta\right) \psi(x)$
- $\mathcal{L}_{0}$ is no longer invariant! $\square$ Add an extra piece to the Lagrangian Introduce a new spin-1 (since $\partial_{\mu} \theta$ has a Lorentz index) field $A_{\mu}(x)$ :

$$
A_{\mu}(x) \quad \xrightarrow{U(1)} \quad A_{\mu}^{\prime}(x) \equiv A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \theta
$$

## Theoretical Formulation

- We define a covariant derivative

$$
\partial_{\mu} \psi(x) \xrightarrow{U(1)} D_{\mu} \psi(x) \equiv\left[\partial_{\mu}+i e Q A_{\mu}\right] \psi(x)
$$

which transforms as $\boldsymbol{\psi}(\boldsymbol{x})$ itself

## Theoretical Formulation

- We define a covariant derivative

$$
\partial_{\mu} \psi(x) \xrightarrow{U(1)} D_{\mu} \psi(x) \equiv\left[\partial_{\mu}+i e Q A_{\mu}\right] \psi(x)
$$

which transforms as $\boldsymbol{\psi}(\boldsymbol{x})$ itself

- The Lagrangian becomes

$$
\mathcal{L}_{0} \rightarrow \mathcal{L} \equiv i \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)
$$

## Theoretical Formulation

- We define a covariant derivative

$$
\partial_{\mu} \psi(x) \xrightarrow{U(1)} D_{\mu} \psi(x) \equiv\left[\partial_{\mu}+i e Q A_{\mu}\right] \psi(x)
$$

which transforms as $\boldsymbol{\psi}(\boldsymbol{x})$ itself

- The Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{0} \rightarrow \mathcal{L} & \equiv i \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x) \\
& =i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)-e Q A_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x) \\
& =\mathcal{L}_{0}-e Q A_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)
\end{aligned}
$$

- Gauge principle has generated an interaction between the Dirac fermions and the gauge field $A_{\mu}$ : the photon $\square$ QED


## Quantum Electrodynamics

- We define a covariant derivative

$$
\partial_{\mu} \psi(x) \xrightarrow{U(1)} D_{\mu} \psi(x) \equiv\left[\partial_{\mu}+i e Q A_{\mu}\right] \psi(x)
$$

which transforms as $\boldsymbol{\psi}(\boldsymbol{x})$ itself

- The Lagrangian becomes

$$
\begin{aligned}
\mathcal{L}_{0} \rightarrow \mathcal{L} & \equiv i \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x) \\
& =i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)-e Q A_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x) \\
& =\mathcal{L}_{0}-e Q A_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)
\end{aligned}
$$

- Gauge principle has generated an interaction between the Dirac fermions and the gauge field $A_{\mu}$ : the photon $\square$ QED

$$
\begin{aligned}
& \mathcal{L}_{Q E D}=i \overline{\boldsymbol{\psi}}(\boldsymbol{x}) \gamma^{\mu} \boldsymbol{D}_{\mu} \psi(\boldsymbol{x})-\boldsymbol{m} \overline{\boldsymbol{\psi}}(\boldsymbol{x}) \psi(\boldsymbol{x})-\frac{1}{4} \boldsymbol{F}_{\mu \nu}(\boldsymbol{x}) F^{\mu \nu}(\boldsymbol{x}) \\
& F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \Rightarrow \text { Kinetic term for } \mathrm{A}_{\mu}
\end{aligned}
$$

## Quantum Electrodynamics

$\mathcal{L}_{Q E D}=i \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)$

- The quantum number associated to QED is the electric charge $Q$ which is conserved according to Noether Theorem and $\mathrm{U}(1)$ invariance


## Quantum Electrodynamics

$\mathcal{L}_{Q E D}=i \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)$

- The quantum number associated to QED is the electric charge Q which is conserved according to Noether Theorem and $\mathrm{U}(1)$ invariance
- NB: A mass term for $\mathrm{A}_{\mu}$ : $\mathcal{L}_{\boldsymbol{m}}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}^{2} \boldsymbol{A}_{\mu}(\boldsymbol{x}) \boldsymbol{A}^{\mu}(\boldsymbol{x})$
is forbidden because it would violate the local $\mathrm{U}(1)$ gauge invariance $\Rightarrow A_{\mu}$ is predicted to be massless.

Experimentally, | $\boldsymbol{m}_{\gamma}<\mathbf{1 \times 1 0 ^ { - 1 8 }} \mathbf{e V}$ | $\begin{array}{l}\text { Ryutov'07 } \\ P D G^{\prime} 21\end{array}$ |
| :--- | :--- |

## Anomalous magnetic moments

- $\mathcal{L}_{Q E D}=i \bar{\psi}(x) \gamma^{\mu} D_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)$
- QED is a very successful quantum field theory
- The most stringent QED test comes from the high-precision measurements of the electron and muon anomalous magnetic moments:

$$
a_{l} \equiv\left(g_{l}^{\gamma}-2\right) / 2 \quad \text { with } \quad \vec{\mu}_{l} \equiv g_{l}^{\gamma}\left(e / 2 m_{l}\right) \vec{S}_{l}
$$

- g was predicted by Dirac to be 2


## QED

- Schwinger computed the first order correction in 1948



## Anomalous magnetic moments

$$
a_{l} \equiv\left(g_{l}^{\gamma}-2\right) / 2 \quad \text { with } \quad \vec{\mu}_{l} \equiv g_{l}^{\gamma}\left(e / 2 m_{l}\right) \vec{S}_{l}
$$

- Experimentally $a_{e}=(1159652180.73 \pm 0.28) \cdot 10^{-12}$

Hanneke, Fogwell Hoogerheide, Gabrielse'11

$$
\text { and } a_{\mu}=\left(\begin{array}{lll}
11 & 659 & 206.1 \pm 4.1
\end{array}\right) \cdot 10^{-10} \quad \begin{aligned}
& \text { E821, BNL'04 }+ \\
& \text { Muon } g-2, \text { FNAL'21 }
\end{aligned}
$$

- These are incredible levels of precision !


## Anomalous magnetic moments

- To a measurable level, $a_{e}$ arises entirely from virtual electrons and photons $\Rightarrow$ fully known to $\mathrm{O}\left(\alpha^{4}\right)$ and many $\mathrm{O}\left(\alpha^{5}\right)$ corrections computed
Kinoshita \& Nio, Aoyama et al. '03-12, Passera'05, '07, Laporta'93, Kataev'06, Kurz et al.'13, etc

$$
a_{e}=(1159652180.73 \pm 0.28) \cdot 10^{-12}
$$

Impressive agreement on $\mathrm{a}_{\mathrm{e}}$ between theory and experiment
$\Rightarrow$ QED very successful theory between theory and experiment
$\Rightarrow$ QED very successful theory to describe Nature.


## Anomalous magnetic moments

- To a measurable level, $\mathrm{a}_{\mathrm{e}}$ arises entirely from virtual electrons and photons $\Rightarrow$ fully known to $\mathrm{O}\left(\alpha^{4}\right)$ and many $\mathrm{O}\left(\alpha^{5}\right)$ corrections computed

$$
a_{e}^{\text {theo }}=(1159652181.643 \pm 0.764) \cdot 10^{-12}
$$

- The theoretical error dominated by uncertainty on $\alpha_{\text {QED }} \equiv e^{2 /(4 \pi)}$
- Turning things around, $a_{e}$ provides the most accurate determination of $\alpha_{\text {QED }}$

$$
\alpha^{-1}=137.035999084 \pm 0.000000051
$$

## Anomalous magnetic moments

$$
a_{l} \equiv\left(g_{l}^{\gamma}-2\right) / 2 \quad \text { with } \quad \vec{\mu}_{l} \equiv g_{l}^{\gamma}\left(e / 2 m_{l}\right) \vec{S}_{l}
$$

- Experimentally $a_{e}=(1159652180.73 \pm 0.28) \cdot 10^{-12}$

$$
\text { and } a_{\mu}=(11659206.1 \pm 4.1) \cdot 10^{-10}
$$

These are incredible levels of precision!

- On the muon side: $a_{\mu}$ is sensitive to small corrections from virtual heavier states; compared to $a_{e}$, they scale with the mass ratio $\left(m_{\mu} / m_{e}\right)^{2}$.



## Anomalous magnetic moments

$$
a_{l} \equiv\left(g_{l}^{\gamma}-2\right) / 2 \quad \text { with } \quad \vec{\mu}_{l} \equiv g_{l}^{\gamma}\left(e / 2 m_{l}\right) \vec{S}_{l}
$$

- Experimentally $a_{e}=(1159652180.73 \pm 0.28) \cdot 10^{-12}$

$$
\text { and } a_{\mu}=(11659206.1 \pm 4.1) \cdot 10^{-10}
$$

These are incredible levels of precision!

- On the muon side: $a_{\mu}$ is sensitive to small corrections from virtual heavier states; compared to $a_{e}$, they scale with the mass ratio $\left(m_{\mu} / m_{e}\right)^{2}$.

2.3 Electroweak Interactions


## Weak Interactions: Introduction

- In particle physics a simpler table made of leptons and quarks: the degrees of freedom


$$
\begin{aligned}
& \begin{array}{c}
\stackrel{ \pm}{\omega} \\
\stackrel{\rightharpoonup}{\omega} \\
\stackrel{\rightharpoonup}{\omega}
\end{array}\binom{\boldsymbol{u}}{\boldsymbol{d}} \\
& \binom{c}{s} \\
& \binom{t}{b} \begin{array}{l}
\text { s. } \\
i \\
i n
\end{array}
\end{aligned}
$$

- 3 forces: electromagnetic, weak and strong forces


## Electroweak Interactions: Charged Currents

Experimentally: weak interaction exhibits interesting characteristics:

- Charged Currents: The interaction of quarks and leptons with the $\mathrm{W}^{ \pm}$bosons:
- W couples only to left-handed fermions and right-handed antifermions

Parity (P: left $\leftrightarrow$ right)
$\Rightarrow$ Charge conjugation (C: particle $\leftrightarrow$ antiparticle) not conserved
But CP is still a good symmetry.


## Electroweak Interactions: Charged Currents

Experimentally: electroweak interaction exhibits interesting characteristics:

- Charged Currents: The interaction of quarks and leptons with the $\mathrm{W}^{ \pm}$bosons:
- W couples only to left-handed fermions and right-handed antifermions

Parity (P: left $\leftrightarrow$ right)
$\Rightarrow$ Charge conjugation (C: particle $\leftrightarrow$ antiparticle) not conserved
But CP is still a good symmetry.


- W couples only to fermionic doublets with g : universal coupling

$$
\binom{\nu_{l}}{l^{-}}_{L}, \quad\binom{q_{u}}{q_{d}}_{L}
$$

## Electroweak Interactions: Charged Currents

Experimentally: electroweak interaction exhibits interesting characteristics:

- The doublet partners of the up, charm and top quarks appear to be mixtures of the three quarks with charge $-1 / 3$ $\Rightarrow$ the weak eigenstates are different than the mass eigenstates:

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Weak Eigenstates CKM Matrix Mass Eigenstates
Unitary $3 \times 3$ Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

## Electroweak Interactions: Neutral Currents

## Experimentally: electroweak interaction exhibits interesting characteristics:

- Neutral Currents: The interaction of quarks and leptons with the $Z$ boson: or phtoton
- All interacting vertices are flavour conserving.

- The interactions depend on the fermion electric charge $Q_{f}$ for em interactions Neutrinos do not have electromagnetic interactions $\left(Q_{v}=0\right)$, but they have a non-zero coupling to the $Z$ boson.
- The $Z$ couplings are different for left-handed and right-handed fermions. The neutrino coupling to the $Z$ involves only left-handed chiralities.
- There are three different light neutrino species.


## Theoretical formulation

- Theory should give:
- different properties for left- and right-handed fields;
- left-handed fermions should appear in doublets
- massive gauge bosons $W^{ \pm}$and $Z$ in addition to the photon.
- Gauge group: $\boldsymbol{G \equiv S U ( \mathbf { 2 } ) _ { L } \otimes \boldsymbol { U } ( \mathbf { 1 } ) _ { Y }}$ with L for left-handed fermion
- Degrees of freedom:

$$
\psi_{1}(x) \equiv\binom{u}{d}_{L} \text { or }\binom{v_{e}}{e^{-}}_{L}, \quad \psi_{2}(x) \equiv u_{R} \text { or } v_{e R}, \quad \psi_{3}(x) \equiv d_{R} \text { or } e_{R}^{-}
$$

- The free Lagrangian:

$$
\mathcal{L}_{0}=i \bar{u}(x) \gamma^{\mu} \partial_{\mu} u(x)+i \bar{d}(x) \gamma^{\mu} \partial_{\mu} d(x)=i \sum_{j=1}^{3} \bar{\psi}_{j} \gamma^{\mu} \partial_{\mu} \psi_{j}
$$

## Theoretical formulation

- $\mathcal{L}_{0}$ is invariant under global G transformations

$$
\begin{aligned}
& \psi_{1}(x) \quad \xrightarrow{G} \quad \psi_{1}^{\prime}(x) \equiv \exp \left\{i y_{1} \beta\right\} U_{L} \psi_{1}(x), \\
& \psi_{2}(x) \quad \xrightarrow{G} \quad \psi_{2}^{\prime}(x) \equiv \exp \left\{i y_{2} \beta\right\} \psi_{2}(x) \\
& \psi_{3}(x) \quad \xrightarrow{G} \quad \psi_{3}^{\prime}(x) \equiv \exp \left\{i y_{3} \beta\right\} \psi_{3}(x)
\end{aligned}
$$

with $U_{L} \equiv \exp \left\{i \frac{\sigma_{i}}{2} \alpha^{i}\right\}$
Pauli matrices $\underset{\text { hypercharges }}{ }$

- Gauge principle: global G transformations $\rightarrow$ local: $\alpha_{i}=\alpha_{i}(x)$ and $\beta=\beta(x)$
- For $\mathcal{L}$ to be invariant introduction of covariant derivatives:

$$
\begin{aligned}
D_{\mu} \psi_{1}(x) & \equiv\left[\partial_{\mu}+i g \widetilde{W}_{\mu}(x)+i g^{\prime} y_{1} B_{\mu}(x)\right] \psi_{1}(x), \\
D_{\mu} \psi_{2}(x) & \equiv\left[\partial_{\mu}+i g^{\prime} y_{2} B_{\mu}(x)\right] \psi_{2}(x), \\
D_{\mu} \psi_{3}(x) & \equiv\left[\partial_{\mu}+i g^{\prime} y_{3} B_{\mu}(x)\right] \psi_{3}(x),
\end{aligned}
$$

with 4 gauge fields: $\widetilde{W}_{\mu}(x) \equiv \frac{\sigma_{i}}{2} W_{\mu}^{i}(x)$ and $\mathrm{B}_{\mu}(\mathrm{x})$ corresponding to $\mathrm{W}^{+/}, \mathrm{Z}$ and Y

## 'Theoretical formulation

- The covariant derivative transforms as the field itself dictating the transf. properties of $\mathrm{W}_{\mu}(\mathrm{x})$ and $\mathrm{B}_{\mu}(\mathrm{x})$

$$
\begin{array}{rll}
B_{\mu}(x) & \xrightarrow{G} & B_{\mu}^{\prime}(x) \equiv B_{\mu}(x)-\frac{1}{g^{\prime}} \partial_{\mu} \beta(x), \\
\widetilde{W}_{\mu} & \xrightarrow{G} \quad \widetilde{W}_{\mu}^{\prime} \equiv U_{L}(x) \widetilde{W}_{\mu} U_{L}^{\dagger}(x)+\frac{i}{g} \partial_{\mu} U_{L}(x) U_{L}^{\dagger}(x)
\end{array}
$$

- The EW Lagrangian is:

$$
\mathcal{L}_{E W}=\sum_{j=1}^{3} i \bar{\psi}_{j}(x) \gamma^{\mu} D_{\mu} \psi_{j}(x)-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} W_{\mu \nu}^{i} W_{i}^{\mu \nu}
$$

## Theoretical formulation

- The covariant derivative transforms as the field itself dictating the transf. properties of $W_{\mu}(x)$ and $B_{\mu}(x)$

$$
\begin{aligned}
B_{\mu}(x) & \xrightarrow{G} \quad B_{\mu}^{\prime}(x) \equiv B_{\mu}(x)-\frac{1}{g^{\prime}} \partial_{\mu} \beta(x), \\
\widetilde{W}_{\mu} & \xrightarrow{G} \quad \widetilde{W}_{\mu}^{\prime} \equiv U_{L}(x) \widetilde{W}_{\mu} U_{L}^{\dagger}(x)+\frac{i}{g} \partial_{\mu} U_{L}(x) U_{L}^{\dagger}(x)
\end{aligned}
$$

- The EW Lagrangian is:

$$
\mathcal{L}_{E W}=\sum_{j=1}^{3} i \bar{\psi}_{j}(x) \gamma^{\mu} D_{\mu} \psi_{j}(x)-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} W_{\mu \nu}^{i} W_{i}^{\mu \nu}
$$

- At the moment the Lagrangian describes interactions between massless fermions and gauge bosons


## Charged Current Interactions

$$
\mathcal{L} \quad \longrightarrow \quad-g \bar{\psi}_{1} \gamma^{\mu} \widetilde{W}_{\mu} \psi_{1}-g^{\prime} B_{\mu} \sum_{j=1}^{3} y_{j} \bar{\psi}_{j} \gamma^{\mu} \psi_{j}
$$

## Charged Current Interactions



- Charged Current Interactions

$$
\begin{array}{cc}
\widetilde{W}_{\mu}=\frac{\sigma^{i}}{2} W_{\mu}^{i}=\frac{1}{2}\left(\begin{array}{cc}
W_{\mu}^{3} & \sqrt{2} W_{\mu}^{\dagger} \\
\sqrt{2} W_{\mu} & -W_{\mu}^{3}
\end{array}\right) \\
\Rightarrow \mathcal{L}_{\mathrm{CC}}= & -\frac{g}{2 \sqrt{2}}\left\{W_{\mu}^{\dagger}\left[\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d+\bar{\nu}_{e} \gamma^{\mu}\left(1-\gamma_{5}\right) e\right]+i W_{\mu}^{2}\right) / \sqrt{2} \\
\sum_{\substack{\text { h.c. } \\
2^{3 / 2}}} \mathrm{~W}
\end{array}
$$

## Neutral Current Interactions



- Neutral Current Interactions Identify $W_{\mu 3}$ and $B_{\mu}$. with the $Z$ and the $\gamma$. But $B_{\mu}$ cannot be equal to $\gamma$. $y_{1}=y_{2}=y_{3}$ and $g^{\prime} y_{j}=e Q_{j}$, cannot be simultaneously true

$$
\Rightarrow\binom{W_{\mu}^{3}}{B_{\mu}} \equiv\left(\begin{array}{cc}
\cos \theta_{W} & \sin \theta_{W} \\
-\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{Z_{\mu}}{A_{\mu}}
$$

$\mathcal{L}_{\mathrm{NC}}=-\sum_{j} \bar{\psi}_{j} \gamma^{\mu}\left\{A_{\mu}\left[g \frac{\sigma_{3}}{2} \sin \theta_{W}+g^{\prime} y_{j} \cos \theta_{W}\right]+Z_{\mu}\left[g \frac{\sigma_{3}}{2} \cos \theta_{W}-g^{\prime} y_{j} \sin \theta_{W}\right]\right\} \psi_{j}$
To get QED from the $A_{\mu}$ piece, one needs to impose the conditions:

$$
g \sin \theta_{W}=g^{\prime} \cos \theta_{W}=e \quad \text { and } \quad Y=Q-T_{3}
$$

## Neutral Current Interactions



- Neutral Current Interaction $\quad \mathcal{L}_{\mathrm{NC}}=\mathcal{L}_{\mathrm{QED}}+\mathcal{L}_{\mathrm{NC}}^{Z}$

$$
\mathcal{L}_{\mathrm{QED}}=-e A_{\mu} \sum \bar{\psi}_{j} \gamma^{\mu} Q_{j} \psi_{j}
$$

and


$$
\mathcal{L}_{\mathrm{NC}}^{Z}=-\frac{e}{2 \sin \theta_{W} \cos \theta_{W}} Z_{\mu} \sum_{f} \bar{f} \gamma^{\mu}\left(v_{f}-a_{f} \gamma_{5}\right) f
$$



## Mass generation: electroweak symmetry breaking

- As we have seen introducing a mass terms for the fermions and the gauge bosons breaks gauge symmetry and $\mathcal{L}$ is no longer invariant
- However in nature the gauge bosons as well as the fermions are massive: $\Rightarrow$ Dilemma: break the gauge symmetry while having a fully symmetric Lagrangian to preserve renormalizability


## Mass generation: electroweak symmetry breaking

- As we have seen introducing a mass terms for the fermions and the gauge bosons breaks gauge symmetry and $\mathcal{L}$ is no longer invariant
- However in nature the gauge bosons as well as the fermions are massive: $\Rightarrow$ Dilemma: break the gauge symmetry while having a fully symmetric Lagrangian to preserve renormalizability
$\Rightarrow$ Obtained through Spontaneous Symmetry Breaking
$\mathcal{L}$ is invariant under $G$ but the ground state or vacuum is no longer invariant


## Spontaneous symmetry breaking

- $\mathcal{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-V(\phi)$ with $\quad V(\phi)=\mu^{2} \phi^{\dagger} \phi+h\left(\phi^{\dagger} \phi\right)^{2}$
- $\mathcal{L}$ is invariant under global phase transformations $U(1)$ of the scalar field

$$
\phi(x) \rightarrow \phi^{\prime}(x) \equiv \exp (i \theta) \phi(x)
$$

- In order to have a ground state the potential should be bounded from below, i.e., h > 0.2 possibilities:


## Spontaneous symmetry breaking

- $\mathcal{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-V(\phi)$ with $\quad V(\phi)=\mu^{2} \phi^{\dagger} \phi+h\left(\phi^{\dagger} \phi\right)^{2}$
- $\mathcal{L}$ is invariant under global phase transformations $U(1)$ of the scalar field

$$
\phi(x) \rightarrow \phi^{\prime}(x) \equiv \exp (i \theta) \phi(x)
$$

- In order to have a ground state the potential should be bounded from below, i.e., h > 0.2 possibilities:

$\mu^{2}>0$ : The potential has only the trivial minimum $\varphi=0 . \square$ A massive scalar particle with mass $\mu$ and quartic coupling $h$.

$\mu^{2}<0$ : The minimum is obtained for

$$
\left|\phi_{0}\right|=\sqrt{\frac{-\mu^{2}}{2 h}} \equiv \frac{v}{\sqrt{2}}>0
$$

## Spontaneous symmetry breaking

- Due to $\mathrm{U}(1)$ invariance of $\phi_{0}(x)=\frac{v}{\sqrt{2}} \exp \{i \theta\}$.
- By choosing a particular direction: $\theta=0$ as the ground state $\Rightarrow$ the symmetry gets spontaneously broken.
- $\phi(x) \equiv \frac{1}{\sqrt{2}}\left[v+\varphi_{1}(x)\right] \exp \left(i \varphi_{2}(x) / v\right)$
- $\varphi_{2}$ excitations around a flat direction in the potential $\Rightarrow$ states with the same energy as the chosen ground state. Those excitations do not cost any energy $\Rightarrow$ correspond to massless states


$$
\begin{aligned}
& \boldsymbol{V}(\boldsymbol{\phi})=\boldsymbol{V}\left(\boldsymbol{\phi}_{\mathbf{0}}\right)+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}_{\varphi_{1}}^{2} \boldsymbol{\varphi}_{1}^{2}+\boldsymbol{h} \boldsymbol{v} \boldsymbol{\varphi}_{1}^{3}+\boldsymbol{h} \boldsymbol{\varphi}_{1}^{4} \\
& \boldsymbol{m}_{\varphi_{1}}^{2}=-2 \mu^{2}>\mathbf{0}, \boldsymbol{m}_{\varphi_{2}}^{2}=\mathbf{0} \\
& 1 \text { massless Goldstone Boson }
\end{aligned}
$$

## Mass generation: electroweak SSB

- We introduce a $\operatorname{SU}(2)_{\llcorner }$doublet of complex scalar fields:

$$
\phi(x) \equiv\binom{\phi^{(+)}(x)}{\phi^{(0)}(x)} \quad y_{\phi}=Q_{\phi}-T_{3}=\frac{1}{2}
$$

- $\mathcal{L}_{S}=\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi-\mu^{2} \phi^{\dagger} \phi-h\left(\phi^{\dagger} \phi\right)^{2}$ is invariant under $\boldsymbol{G \equiv S} \boldsymbol{U}(\mathbf{2})_{L} \otimes \boldsymbol{U}(\mathbf{1})_{Y}$ $D^{\mu} \phi=\left[\partial^{\mu}+i g \widetilde{W}^{\mu}+i g^{\prime} y_{\phi} B^{\mu}\right] \phi$,
- Degenerate Vacuum States: $\left|\left|\langle 0| \phi^{(0)}\right| 0\right\rangle \left\lvert\,=\sqrt{\frac{-\mu^{2}}{2 h}} \equiv \frac{v}{\sqrt{2}}\right.$
- Spontaneous Symmetry Breaking:

$$
\phi(x)=\exp \left\{i \frac{\sigma_{i}}{2} \theta^{i}(x)\right\} \frac{1}{\sqrt{2}}\binom{0}{v+H(x)}
$$

4 real fields $\theta^{i}(x)+H(x)$

## Mass generation: electroweak SSB

- Spontaneous Symmetry Breaking:

$$
\phi(x)=\exp \left\{i \frac{\sigma_{i}}{2} \theta^{i}(x)\right\} \frac{1}{\sqrt{2}}\binom{0}{v+H(x)} \quad 4 \text { real fields } \theta^{\mathrm{i}}(\mathrm{x})+\mathrm{H}(\mathrm{x})
$$

- $\operatorname{SU}(2)_{\mathrm{L}}$ invariance $\Rightarrow \theta^{i}(x)$ can be gauged away
- 3 massless Goldstone bosons that are «eaten » to give masses to $\mathrm{W}^{+/}$and Z

$$
\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi \quad \xrightarrow{\theta^{i}=0} \quad \frac{1}{2} \partial_{\mu} H \partial^{\mu} H+(v+H)^{2}\left\{\frac{g^{2}}{4} W_{\mu}^{\dagger} W^{\mu}+\frac{g^{2}}{8 \cos ^{2} \theta_{W}} Z_{\mu} Z^{\mu}\right\}
$$

$\Rightarrow$ Massive Gauge Bosons

$$
M_{Z} \cos \theta_{W}=M_{W}=\frac{1}{2} v g
$$

## Mass generation: electroweak SSB

- $G \equiv S U(\mathbf{2})_{L} \otimes U(1)_{Y}$


## SSB

- Before SSB:
- 3 massless $\mathrm{W}^{ \pm}$and $Z$ bosons, i.e., $3 \times 2=6$ d.o.f fields
- 3 Goldstones $\theta^{i}(x)$
- H(x)


3 GBs « eaten» to give masses to $\mathrm{W}^{+/-}$and Z

- After SSB:
- 3 massives $W^{ \pm}$and $Z$ bosons, i.e., $3 \times 3=9$ d.o.f fields
$-H(x)$
- Higgs field remains in the spectrum


## Mass generation: electroweak SSB

- $G \equiv S U(\mathbf{2})_{L} \otimes U(1)_{Y}$


## SSB

- Before SSB:
- 3 massless $\mathrm{W}^{ \pm}$and $Z$ bosons, i.e., $3 \times 2=6$ d.o.f fields
- 3 Goldstones $\theta^{i}(x)$
- H(x)


3 GBs « eaten» to give masses to $\mathrm{W}^{+/-}$and Z

- After SSB:
- 3 massives $W^{ \pm}$and $Z$ bosons, i.e., $3 \times 3=9$ d.o.f fields
$-H(x)$
- Higgs field remains in the spectrum


## Higgs field

- Discovery of a 125 GeV scalar particle at LHC on July 4, 2012: Missing piece of the Standard Model

$$
h \rightarrow \gamma \gamma
$$





## Fermion masses

- Yukawa Lagrangian:

$$
\begin{aligned}
& \mathcal{L}_{Y}=-c_{1}(\bar{u}, \bar{d})_{L}\binom{\phi^{(+)}}{\phi^{(0)}} d_{R}-c_{2}(\bar{u}, \bar{d})_{L}\binom{\phi^{(0) *}}{-\phi^{(-)}} u_{R}-c_{3}\left(\bar{\nu}_{e}, \bar{e}\right)_{L}\binom{\phi^{(+)}}{\phi^{(0)}} e_{R}+\text { h.c. } \\
& \quad \mathbf{S S B} \\
& \mathcal{L}_{Y}=-\left(1+\frac{H}{v}\right)\left\{m_{d} \bar{d} d+m_{u} \bar{u} u+m_{e} \bar{e} e\right\}
\end{aligned}
$$

$\Rightarrow$ Massive Fermions

## Standard Model Lagrangian



## Application of EW interactions

- Study of the process: $\nu_{e}+e^{-} \rightarrow \nu_{e}+e^{-}$
- Can it go through strong, EM, weak interactions?
- How many Feynman diagrams at tree level?


## Application of EW interactions

- Study of the process: $\nu_{e}+e^{-} \rightarrow \nu_{e}+e^{-}$
- Involve leptons only $\Rightarrow$ no strong interaction
- The neutrinos are electrically neutral $\Rightarrow$ no EM interaction $\Rightarrow$ Only Weak interactions !
- How many Feynman diagrams?


## Application of EW interactions

- Study of the process: $\nu_{e}+e^{-} \rightarrow v_{e}+e^{-}$
- Involve leptons only $\Rightarrow$ no strong interaction
- The neutrinos are electrically neutral $\Rightarrow$ no EM interaction $\Rightarrow$ Only Weak interactions !
- How many Feynman diagrams?

2.4 Strong Interactions


## Introduction

- In particle physics a simpler table made of leptons and quarks: the degrees of freedom

- 3 forces: electromagnetic, weak and strong forces


## Quark masses

- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks

Proton


Contrary to naïve expectation, most of its mass comes from strong force

Only $1 \%$ of its mass comes from the quark masses (Coupling of the quarks to the Higgs boson)

## Quark masses

- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks


Contrary to naïve expectation, most of its mass comes from strong force

Only $1 \%$ of its mass comes from the quark masses (Coupling of the quarks to the Higgs boson)

- How can we access the quark masses?


## Strong interaction

- Problem: quarks and gluons are not free particles: they are bound inside hadrons



## Strong interaction

- Problem: quarks and gluons are not free particles: they are bound inside hadrons

- Two properties:
- Confinement
- Asymptotic freedom : The interaction decreases at high energies Nobel Prize in 2004 for Frank Wilczek and David Gross and David Politzer


## Quark masses

- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks


Contrary to naïve expectation, most of its mass comes from strong force

Only $1 \%$ of its mass comes from the quark masses (Coupling of the quarks to the Higgs boson)

- How can we access the quark masses?
- In principle a theory $\square$ Quantum ChromoDynamics

$$
\square \mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) \boldsymbol{q}_{k}
$$

## Formulation of QCD

- $\operatorname{SU}(3)_{C}$ QCD invariant Lagrangian

$$
\Rightarrow \mathcal{L}_{\varrho C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- Different parts to describe the interactions

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4}\left(\partial^{\mu} G_{a}^{v}-\partial^{v} G_{a}^{\mu}\right)\left(\partial_{\mu} G_{v}^{a}-\partial_{v} G_{\mu}^{a}\right)+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-m_{k}\right) q_{k} \\
& +g_{S} G_{a}^{\mu} \sum_{k=1}^{N_{F}} \bar{q}_{k} \gamma_{\mu}\left(\frac{\lambda_{a}}{2}\right) \boldsymbol{q}_{k} \\
& -\frac{g_{S}}{2} f^{a b c}\left(\partial^{\mu} G_{a}^{v}-\partial^{v} G_{a}^{\mu}\right) G_{\mu}^{b} G_{v}^{c}-\frac{g_{S}^{2}}{4} f^{a b c} f_{a d e} G_{b}^{\mu} G_{c}^{v} G_{\mu}^{d} G_{v}^{e}
\end{aligned}
$$

## Formulation of QCD

- $\operatorname{SU}(3)_{\mathrm{C}}$ QCD invariant Lagrangian

$$
\Rightarrow \mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- Different parts to describe the interactions

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4}\left(\partial^{\mu} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\mu}\right)\left(\partial_{\mu} G_{v}^{a}-\partial_{\nu} G_{\mu}^{a}\right)+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-m_{k}\right) \boldsymbol{q}_{k} \\
& +g_{S} G_{a}^{\mu} \sum_{k=1}^{N_{F}} \bar{q}_{k} \gamma_{\mu}\left(\frac{\lambda_{a}}{2}\right) \boldsymbol{q}_{k} \\
& -\frac{g_{S}}{2} f^{a b c}\left(\partial^{\mu} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\mu}\right) G_{\mu}^{b} G_{v}^{c}-\frac{g_{S}^{2}}{4} f^{a b c} f_{a d e} G_{b}^{\mu} G_{c}^{v} G_{\mu}^{d} G_{v}^{e}
\end{aligned}
$$

## Formulation of QCD

- $\operatorname{SU}(3)_{\mathrm{C}}$ QCD invariant Lagrangian

$$
\Rightarrow \mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- Different parts to describe the interactions

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4}\left(\partial^{\mu} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\mu}\right)\left(\partial_{\mu} G_{v}^{a}-\partial_{\nu} G_{\mu}^{a}\right)+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-\boldsymbol{m}_{k}\right) \boldsymbol{q}_{k} \\
& +\boldsymbol{g}_{S} G_{a}^{\mu} \sum_{k=1}^{N_{F}} \bar{q}_{k} \gamma_{\mu}\left(\frac{\lambda_{a}}{2}\right) \boldsymbol{q}_{k} \Rightarrow \begin{array}{c}
\text { Interaction quarks } \\
\text { gluon }
\end{array} \\
& -\frac{\boldsymbol{g}_{S}}{2} f^{a b c}\left(\partial^{\mu} G_{a}^{v}-\partial^{\nu} G_{a}^{\mu}\right) G_{\mu}^{b} G_{v}^{c}-\frac{\boldsymbol{g}_{S}^{2}}{4} f^{a b c} f_{a d e} G_{b}^{\mu} G_{c}^{v} G_{\mu}^{d} G_{v}^{e}
\end{aligned}
$$

## Formulation of QCD

- Different parts to describe the interactions

$$
\begin{aligned}
& \mathcal{L}_{Q C D}=-\frac{1}{4}\left(\partial^{\mu} G_{a}^{v}-\partial^{\nu} G_{a}^{\mu}\right)\left(\partial_{\mu} G_{v}^{a}-\partial_{v} G_{\mu}^{a}\right)+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-\boldsymbol{m}_{k}\right) \boldsymbol{q}_{k} \\
& +g_{S} G_{a}^{\mu} \sum_{k=1}^{N_{F}} \bar{q}_{k} \gamma_{\mu}\left(\frac{\lambda_{a}}{2}\right) q_{k} \\
& -\frac{\boldsymbol{g}_{S}}{2} f^{a b c}\left(\partial^{\mu} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\mu}\right) G_{\mu}^{b} G_{v}^{c}-\frac{\boldsymbol{g}_{S}^{2}}{4} f^{a b c} f_{a d e} G_{b}^{\mu} G_{c}^{\nu} G_{\mu}^{d} G_{v}^{e}
\end{aligned}
$$

## Formulation of QCD

- $\operatorname{SU}(3)_{\mathrm{C}}$ QCD invariant Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

$$
\begin{aligned}
\Rightarrow \mathcal{L}_{Q C D}= & -\frac{1}{4}\left(\partial^{\mu} G_{a}^{v}-\partial^{v} G_{a}^{\mu}\right)\left(\partial_{\mu} G_{v}^{a}-\partial_{v} G_{\mu}^{a}\right)+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-\boldsymbol{m}_{k}\right) \boldsymbol{q}_{k} \\
& +g_{S} G_{a}^{\mu} \sum_{k=1}^{N_{F}} \bar{q}_{k} \gamma_{\mu}\left(\frac{\lambda_{a}}{2}\right) \boldsymbol{q}_{k} \\
& -\frac{g_{S}}{2} f^{a b c}\left(\partial^{\mu} G_{a}^{v}-\partial^{v} G_{a}^{\mu}\right) G_{\mu}^{b} G_{v}^{c}-\frac{g_{S}^{2}}{4} f^{a b c} f_{a d e} G_{b}^{\mu} G_{c}^{v} G_{\mu}^{d} G_{v}^{e}
\end{aligned}
$$

$>$ One single universal coupling: $\alpha_{s}(\mu)=\frac{g_{s}^{2}(\mu)}{4 \pi}$ strong coupling constant
$>$ It is not a constant, depends on the energy!

## Strong interaction

- Problem: quarks and gluons are bound inside hadrons

- High energies, short distance:
$\alpha_{s}$ small $\Rightarrow$ Asymptotic freedom
Perturbative QCD
Theory "easy" to solve
Order-by-order expansion in $\frac{\alpha_{s}(\mu)}{\pi}$

$$
\sigma=\sigma_{0}+\underbrace{\frac{\alpha_{s}}{\pi} \sigma_{1}}_{\text {small }}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} \sigma_{2}}_{\text {smaller }}+\left(\frac{\alpha_{s}}{\pi}\right)^{3} \sigma_{3}+\ldots
$$



Asymptotic freedom

## Strong interaction

- Looking for new physics in hadronic processes $\Rightarrow$ not direct access to quarks due to confinement

PDG'12

$>$ Low energy $(\mathrm{Q}<\sim 1 \mathrm{GeV})$, long distance: $\alpha_{S}$ becomes large!
$\Rightarrow$ Non-perturbative QCD
A perturbative expansion in the usual sense fails
$\Rightarrow$ Use of alternative approaches, expansions...


## Strong interaction

- Looking for new physics in hadronic processes $\Rightarrow$ not direct access to quarks due to confinement



## Lattice QCD

- Principle: Discretization of the space time and solve QCD on the lattice numerically
- All quark and gluon fields of QCD on a 4D-lattice
- Field configurations by Monte Carlo sampling
- Important subtleties due to the discretization, should come back to the continuum, formulation of the fermions on the lattice...



## Strong interaction

- Looking for new physics in hadronic processes $\Rightarrow$ not direct access to quarks due to confinement




## Quark masses



- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry

Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons (or up and down quarks)

## Quark masses



- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry

Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons (or up and down quarks)

## Quark masses

## Neutron



## Proton

VS.


- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry

Heisenberg'60
Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons

- Electromagnetic energy: one obvious difference between a neutron and a proton is their electric charges:

$$
\boldsymbol{Q}_{P}=\boldsymbol{1} \text { and } \boldsymbol{Q}_{n}=\mathbf{0} \text { Since } \boldsymbol{E}_{e} \propto \frac{\boldsymbol{Q}^{2}}{\boldsymbol{R}} \quad \square \mathrm{M}_{\mathrm{p}}>\mathrm{M}_{\mathrm{n}} \text { ? }
$$

## Quark masses

## Neutron



Proton

VS.


- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry

Heisenberg'60
Countless experiments have shown that strong force obeys isospin symmetry Results are the same if we interchange neutrons and protons

- Electromagnetic energy: one obvious difference between a neutron and a proton is their electric charges:

$$
\boldsymbol{Q}_{P}=\boldsymbol{1} \text { and } \boldsymbol{Q}_{n}=\mathbf{0} \text { Since } \boldsymbol{E}_{e} \propto \frac{\boldsymbol{Q}^{2}}{\boldsymbol{R}} \quad \square \mathrm{M}_{\mathrm{p}}>\mathrm{M}_{\mathrm{n}} \text { ? }
$$

$\Rightarrow$ Terrible consequences : Proton would decay into neutrons and there will be no chemistry and we would not be there in this room!

## Quark masses

## Neutron <br> 

Proton
vs.


- Strong force: If $m_{u} \sim m_{d}: M_{n} \sim M_{p}$ isospin symmetry Heisenberg'60
- Electromagnetic energy:

$$
M_{p}>M_{n}
$$

- This is not the case: Why?



## Quark masses

## Neutron



Proton
vs.


- Strong force: If $\mathrm{m}_{\mathrm{u}} \sim \mathrm{m}_{\mathrm{d}}: \mathrm{M}_{\mathrm{n}} \sim \mathrm{M}_{\mathrm{p}}$ isospin symmetry Heisenberg'60
- Electromagnetic energy: $M_{p}>M_{n}$
- This is not the case: Why?
- Another small effect in addition to e.m. force:
different fundamental quark masses

$$
m_{d} \neq m_{u}
$$


$\Rightarrow$ Different coupling to Higgs field

## Quark masses

Neutron
Proton


Quarks

## QUARKS

The $u$-, $d$-, and $s$-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The $c$ - and $b$-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the $b$-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
$u$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
& m_{u} / m_{d}=0.48_{-0.08}^{+0.07}
\end{aligned}
$$

d

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

## Particle Data Group'18

$m_{d}-m_{u}=4.7-2.2=2.5 \mathrm{MeV}$

Quark mass difference more important than e.m. effect

Neutrons can decay in protons!

## Quark masses

Neutron
Proton


## Quarks

## QUARKS

The $u$-, $d$-, and $s$-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The $c$ - and $b$-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the $b$-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
$u$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
& m_{u} / m_{d}=0.48_{-0.08}^{+0.07}
\end{aligned}
$$

d

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

## Quark masses

Neutron
Proton


## Quarks

## QUARKS

The $u$-, $d$-, and $s$-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The $c$ - and $b$-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the $b$-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
$u$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} \quad \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
& m_{u} / m_{d}=0.48_{-0.08}^{+0.07}
\end{aligned}
$$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

## Particle Data Group'18

$m_{d}-m_{u}=4.7-2.2=2.5 \mathrm{MeV}$

To determine these fundamental parameters need to know how to disentangle them from QCD
$\square$ treat strong interactions

## Quark masses

Neutron


## QUARKS

The $u$-, $d$-, and $s$-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathrm{MS}}$ at a scale $\mu \approx 2 \mathrm{GeV}$. The $c$ - and $b$-quark masses are the "running" masses in the $\overline{\mathrm{MS}}$ scheme. For the $b$-quark we also quote the 1 S mass. These can be different from the heavy quark masses obtained in potential models.
$u$

$$
\begin{array}{cc}
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right) \\
m_{u}=2.2_{-0.4}^{+0.5} \mathrm{MeV} & \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
m_{u} / m_{d}=0.48_{-0.08}^{+0.07} &
\end{array}
$$

d

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{d}=4.7_{-0.3}^{+0.5} \mathrm{MeV} \quad \text { Charge }=-\frac{1}{3} \text { e } \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.5_{-0.2}^{+0.5} \mathrm{MeV}
\end{aligned}
$$

## Particle Data Group'18

$$
m_{d}-m_{u}=4.7-2.2=2.5 \mathrm{MeV}
$$

2.5 Success of the Standard Model and search for New Physics

## Oscillations of Kaons

- Let us consider simplest hadrons: the mesons. They are quark-anti-quark bound states. They interact with strong, electromagnetic and weak forces

- The simplest one is the pion:


The pions mediate strong force in nuclei It is ubiquitous in hadronic collisions

## Oscillations of Kaons

- Let us consider simplest hadrons: the mesons. They are quark-anti-quark bound states. They interact with strong, electromagnetic and weak forces.

- The simplest one is the pion:
(1)

- The ones containing a s quark are the kaons

$$
\begin{aligned}
& K^{+}: u \bar{s}, K^{0}: \mathrm{d} \bar{s}, \bar{K}^{0}: s \bar{d} \\
& K^{-}: \bar{u} s
\end{aligned}
$$

Discovered in cosmic ray experiments

## Oscillations of Kaons

- Discovered in 1964 by Christenson, Cronin, Fitch and Turlay
$\Rightarrow$ Nobel Prize in 1980 for Cronin and Fitch
- Start with a $\boldsymbol{K}^{\mathbf{0}} \square$ after some time it transforms into a $\overline{\boldsymbol{K}}^{\mathbf{0}}$

through weak interaction Short distance effect
- The rate of this oscillation is suppressed but measurable in the Standard Model

[^0]
## Oscillations of Kaons

- Discovered in 1964 by Christenson, Cronin, Fitch and Turlay
$\Rightarrow$ Nobel Prize in 1980 for Cronin and Fitch
- Start with a $\boldsymbol{K}^{\mathbf{0}} \square$ after some time it transforms into a $\overline{\boldsymbol{K}}^{\mathbf{0}}$

through weak interaction Short distance effect
- The rate of this oscillation is very suppressed in the Standard Model

$$
\Rightarrow \text { goes through weak interactions } \sim G_{F}
$$

- How can we understand the oscillation rate?


## Oscillations of Kaons



- Process described using the bag parameter $\mathrm{B}_{\mathrm{K}}$ Fundamental hadronic quantity proportional to matrix element
$\square$ determined using lattice QCD

$$
\begin{gathered}
\left\langle\bar{K}^{0}\right| \mathbf{H}\left|K^{0}\right\rangle \sim \sum_{i j} \lambda_{i} \lambda_{j} S\left(r_{i}, r_{j}\right) \eta_{i j}\left\langle O_{\Delta S=2}\right\rangle \\
\left\langle O_{\Delta S=2}\right\rangle=\alpha_{s}(\mu)^{-2 / 9}\left\langle\bar{K}^{0}\right|\left(\bar{s}_{L} \gamma^{\alpha} d_{L}\right)\left(\bar{s}_{L} \gamma_{\alpha} d_{L}\right)\left|K^{0}\right\rangle \equiv\left(\frac{4}{3} M_{K}^{2} f_{K}^{2}\right)\left(\hat{B}_{K}\right) \\
\lambda_{i} \equiv V_{i d} V_{i s}^{*} \quad ; \quad r_{i} \equiv m_{i}^{2} / M_{W}^{2} \quad(i=u, c, t)
\end{gathered}
$$

## Oscillations of Kaons

- Since process is suppressed in the Standard Model:
very sensitive to new physics: new degrees of freedom and symmetries


BSM

$1 / \Lambda^{2}$

- If measured with very good precision provided the SM contribution is known
$\square$ stringent constraints on new physics models


## Oscillations of B mesons

- Similar tests with other mesons $\square$ Beauty mesons contain a b-quark


$$
\begin{array}{ll}
B^{+}: u \bar{b}, & B^{0}: d \bar{b} \\
B^{-}: \bar{u} b, & \bar{B}^{0}: \bar{d} b \\
B_{s}^{0}: s \bar{b}, & \bar{B}_{s}^{0}: \bar{s} b \\
B_{c}^{0}: c \bar{b}, & B_{c}^{0}: \bar{c} b
\end{array}
$$

- B meson physics have been studied extensively at BaBar, Belle, CDF, D0@Tevatron and now Belle-II, LHCb, CMS and ATLAS@LHC


## Oscillations of B mesons

- Similar tests with other mesons $\square$ Beauty mesons contain a b-quark


$$
\begin{array}{ll}
B^{+}: u \bar{b}, & B^{0}: d \bar{b} \\
B^{-}: \bar{u} b, & \bar{B}^{0}: \bar{d} b \\
B_{s}^{0}: s \bar{b}, & \bar{B}_{s}^{0}: \bar{s} b \\
B_{c}^{0}: c \bar{b}, & B_{c}^{0}: \bar{c} b
\end{array}
$$

- B meson physics have been studied extensively at BaBar, Belle, CDF, D0@Tevatron and now Belle-II, LHCb, CMS and ATLAS@LHC
- Similar tests with D mesons


## Oscillations of B mesons

- Similar tests with other mesons

- Stringent constraints on new physics models provided hadronic matrix elements known


## New Physics and Flavour sector

- Very sensitive to New Physics



## Anomalies in Flavour Physics

- Exciting discrepancies found recently:




# CERNCOURIER 



## Anomalies in Flavour Physics

- These anomalies have generated a lot of excitement and theoretical papers to try to explain them using new physics models
- This requires a good understanding of hadronic physics

```
see e.g. Celis, Cirigliano, E.P., Phys.Rev. D89 (2014) 013008,
    Phys.Rev. D89 (2014) no.9, 095014
```

- New measurements are planned at ATLAS, CMS (dedicated B physics run) LHCb and Belle II
- Better precision within the next decade $\square$ match the level of precision theoretically with hadronic physics


## 3. Back up

## Proton

- Let us consider the proton: it is not a fundamental particle, it is made of 3 quarks



### 2.2 Flavour Physics

Description of the weak interactions:

$$
\begin{aligned}
& \mathcal{L}_{E W}=\frac{\boldsymbol{g}}{\sqrt{2}} W_{\alpha}^{+}\left(\bar{D}_{L} V_{C K M} \gamma^{\alpha} U_{L}+\bar{e}_{L} \gamma^{\alpha} \nu_{e_{L}}+\bar{\mu}_{L} \gamma^{\alpha} \nu_{\mu_{L}}+\bar{\tau}_{L} \gamma^{\alpha} \nu_{\tau_{L}}\right)+\text { h.c. }
\end{aligned}
$$

## Probing the CKM mechanism

- The CKM Mechanism source of Charge Parity Violation in SM
- Unitary $3 \times 3$ Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

Weak Eigenstates CKM Matrix Mass Eigenstates

$$
\sim\left(\begin{array}{ccc}
1 & \square \lambda & \lambda^{3} \\
\square \lambda & 1 & \lambda^{2} \\
\lambda^{3} & -\lambda^{2} & 1
\end{array}\right)
$$

### 3.1 Probing the CKM mechanism

- The CKM Mechanism source of Charge Parity Violation in SM
- Unitary $3 \times 3$ Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

## Weak Eigenstates CKM Matrix

Mass Eigenstates

- Fully parametrized by four parameters if unitarity holds: three real parameters and one complex phase that if non-zero results in CPV
- Unitarity can be visualized using triangle equations, e.g.

$$
V_{C K M} V_{C K M}^{\dagger}=1 \quad \rightarrow \quad V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$

## CKM picture over the years: from discovery to precision

Existence of $C P V$ phase established in 2001 by BaBar \& Belle

- Picture still holds 15 years later, constrained with remarkable precision
- But: still leaves room for new physics contributions




### 3.1 Probing the CKM mechanism



### 2.2 Oscillations of Kaons

- Similar tests with other mesons


SM


CDF, D0'06, LHCb'11
$\Rightarrow \mathrm{CP}$ violation in D decays LHCb'19

- Stringent constraints on new physics models provided hadronic matrix elements known


## Lattice results for BK

$$
B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.557 \pm 0.007 \quad, \quad \hat{B}_{K}=0.763 \pm 0.010 \quad\left(N_{f}=2+1\right)
$$



Flavianet Lattice Averaging Group

## $\mathrm{B} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-} \rightarrow \mathrm{K} \pi \mu^{+} \mu^{-}$

$$
\begin{aligned}
\frac{1}{\mathrm{~d} \Gamma / d q^{2}} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
q^{2}=S_{\mu^{+} \mu^{-}} & +S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{L}\left(1-F_{L}\right)}}: & \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$




- Build an observable the less sensitive possible to hadronic uncertainties $\square P 5^{\prime}$ Only at LO

DHMV: Descotes-Genon et al.'15 ASZB:

- But new physics contributions involve hadronic physics!


## $\mathbf{R}_{\mathrm{K}}, \mathbf{R}_{\mathrm{K}^{*}}$




$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Hadronic uncertainties cancel in the ratio



$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Hadronic uncertainties cancel in the ratio
- Update from LHCb and Belle
* Original LHCb result (2.6б):
$R_{K}=0.745_{-0.074}^{+0.090}($ stat $) \pm 0.036$ (syst)

LHCb 1406.6482



$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Hadronic uncertainties cancel in the ratio
- Update from LHCb and Belle
* Original LHCb result (2.6б):
$R_{K}=0.745_{-0.074}^{+0.090}($ stat $) \pm 0.036$ (syst)
* New result including data until 2016 (2.5б):

$$
R_{K}=0.846_{-0.054}^{+0.060}+0.016
$$

## $\mathbf{R}_{\mathrm{K}}, \mathbf{R}_{\mathrm{K} *}$ : Belle results




## $\mathbf{R}_{\mathrm{D}}, \mathbf{R}_{\mathrm{D}^{*}}$ : recent update from Belle



Significance reduced from 4.1 to $3.1 \sigma$

$$
\begin{aligned}
\mathcal{R}(D) & =0.307 \pm 0.037 \pm 0.016 \\
\mathcal{R}\left(D^{*}\right) & =0.283 \pm 0.018 \pm 0.014
\end{aligned}
$$

(Belle 2019: 1.2б)

## Leptons decays



## Contribution to (g-2) ${ }_{\mu}$

Hoecker'11

## QED

Hadronic
Weak
SUSY... ?
... or some unknown
type of new physics?







... or no effect on $a_{\mu}$, but new physics at the LHC? That would be interesting as well !!

Need to compute the SM prediction with high precision! $\square$ Not so easy! Hadrons enter virtually through loops!

### 2.1 Quark masses

- Quark masses fundamental parameters of the QCD Lagrangian

$$
\square \mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- No direct experimental access to quark masses due to confinement!
- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks


Contrary to naïve expectation, most of its mass comes from strong force

Only $1 \%$ of its mass comes from the quark masses (Coupling of the quarks to the Higgs boson)

### 2.1 Quark masses

- Quark masses fundamental parameters of the QCD Lagrangian

$$
\Rightarrow \mathcal{L}_{Q C D}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}+\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} D_{\mu}-m_{k}\right) q_{k}
$$

- No direct experimental access to quark masses due to confinement!
- Let us consider the proton: it is not a fundamental particle, but a bound state of 3 quarks



### 2.6 Why a new dispersive analysis?

- Several new ingredients:
- New inputs available: extraction $\pi \pi$ phase shifts has improved

> Ananthanarayan et al'01, Colangelo et al'01
> Descotes-Genon et al'01
> Kaminsky et al'01, Garcia-Martin et al'09

- New experimental programs, precise Dalitz plot measurements

TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)

- Many improvements needed in view of very precise data: inclusion of
- Electromagnetic effects $\left(\mathcal{O}\left(\mathrm{e}^{2} \mathrm{~m}\right)\right)$ Ditsche, Kubis, Meissner'09
- Isospin breaking effects


### 2.7 Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$



- One truncates the partial wave expansion : $\Rightarrow$ Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$



3 BWs ( $\left.\rho^{+}, \rho^{-}, \rho^{0}\right)+$ background term
$\Rightarrow$ Improve to include final states interactions

### 2.7 Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$



- One truncates the partial wave expansion : $\square$ Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$



- Use a Khuri-Treiman approach or dispersive approach

$\Rightarrow$Restore 3 body unitarity and take into account the final state interactions in a systematic way

### 2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles Anisovich \& Leutwyler'96
$>$ Amplitude in terms of S and P waves $\Rightarrow$ exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside $\mathrm{M}_{1}$

### 2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}^{0}(s)+(s-u) M_{1}^{1}(t)+(s-t) M_{1}^{1}(u)+M_{0}^{2}(t)+M_{0}^{2}(u)-\frac{2}{3} M_{0}^{2}(s)
$$

Roy analysis

- Unitarity relation:

$$
\frac{\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{\boldsymbol{M}}_{\ell}^{I}(s)\right)}{\pi \pi \rightarrow \pi \pi} \overbrace{\text { right-hand cut }}^{\text {left-hand cut }}
$$



### 2.8 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

- Relation of dispersion to reconstruct the amplitude everywhere:

$$
\begin{aligned}
& \qquad M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right) \\
& \text { Omnès function } \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right] \\
& \text { Gasser \& Rusetsky'18 }
\end{aligned}
$$

- $P_{\mathrm{l}}(\mathrm{s})$ determined from a fit to NLO ChPT + experimental Dalitz plot


## $2.9 \eta \rightarrow 3 \pi$ Dalitz plot

- In the charged channel: experimental data from WASA, KLOE, BESIII

- New data expected from CLAS and GlueX with very different systematics


### 2.10 Results: Amplitude for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $\mathrm{s}=\mathrm{u}$ :



### 2.10 Results: Amplitude for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $t=u$ :



### 2.11 $Z$ distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- The amplitude squared in the neutral channel is


MAMI


### 2.12 Comparison of results for $\alpha$


$\alpha=-\mathbf{0 . 0 3 0 2} \pm \mathbf{0 . 0 0 1 1}$

### 2.13 Quark mass ratio


$Q=22.1 \pm 0.7$

- No systematics taken into account $\Rightarrow$ collaboration with experimentalists


### 2.14 Light quark masses



- Smaller values for $Q \Rightarrow$ smaller values for $m_{s} / m_{d}$ and $m_{d} / m_{d}$ than LO ChPT


### 2.14 Light quark masses



## Formulation of QCD

## Dynamics: The Lagrangien

- Build all the invariants under $S U(3)_{C}$ with the quarks

$$
\Rightarrow \mathcal{L}_{0}=\sum_{k=1}^{N_{F}} \bar{q}_{k}\left(i \gamma^{\mu} \partial_{\mu}-m_{k}\right) q_{k}
$$


invariant under global $\mathrm{SU}(3)_{\mathrm{c}}: q_{k}^{\alpha} \rightarrow\left(q_{k}^{\alpha}\right)^{\prime}=U^{\alpha}{ }_{\beta} q_{k}^{\beta}$
with $U=\exp \left(-i g_{s} \frac{\lambda_{a}}{2} \theta_{a}\right)$ and $\lambda_{a}$ the generators of $\mathrm{SU}(3)_{\mathrm{c}}:\left[\lambda^{a}, \lambda^{b}\right]=\mathbf{2 i f} \boldsymbol{f}^{a b c} \lambda^{c}$

- Gauge the theory: $\mathrm{SU}(3)_{\mathrm{C}} \rightarrow$ local $\Rightarrow \theta_{a} \rightarrow \theta_{a}(x)$
$\Rightarrow 8$ different independent gauge fields: $G_{\mu}^{a}$ the gluons lele

$$
\partial_{\mu} q_{k} \rightarrow D_{\mu} q_{k} \equiv[\partial_{\mu}-i g_{s} \underbrace{\frac{\lambda_{a}}{2} G_{\mu}^{a}(x)}_{G_{\mu}(x)}] q_{k}
$$

### 1.4 Strong interaction

- Looking for new physics in hadronic processes $\Rightarrow$ not direct access to quarks due to confinement



## Dispersive approach

- Dispersion Relations: extrapolate ChPT at higher energies

Anisovich \& Leutwyler'96


- Important corrections in the physical region taken care of by the dispersive treatment!


## Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$



- One truncates the partial wave expansion : $\Rightarrow$ Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\text {max }}}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$



3 BWs ( $\left.\rho^{+}, \rho^{-}, \rho^{0}\right)+$ background term
$\Rightarrow$ Improve to include final states interactions

## Method

- S-channel partial wave decomposition

$$
A_{\lambda}(s, t)=\sum_{J}^{\infty}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) A_{J}(s)
$$



- One truncates the partial wave expansion : $\Rightarrow$ Isobar approximation

$$
\begin{aligned}
A_{\lambda}(s, t) & =\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{s}\right) f_{J}(s) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{t}\right) f_{J}(t) \\
& +\sum_{J}^{J_{\max }}(2 J+1) d_{\lambda, 0}^{J}\left(\theta_{u}\right) f_{J}(u)
\end{aligned}
$$



- Use a Khuri-Treiman approach or dispersive approach

$\Rightarrow$Restore 3 body unitarity and take into account the final state interactions in a systematic way

## Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves $\Rightarrow$ exact up to NNLO $\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
$>$ Main two body rescattering corrections inside $\mathrm{M}_{\mathrm{l}}$

## Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

- Unitarity relation:

$$
\operatorname{disc}\left[M_{\ell}^{I}(s)\right]=\rho(s) t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s)+\hat{M}_{\ell}^{I}(s)\right)
$$

- Relation of dispersion to reconstruct the amplitude everywhere:

$$
\begin{aligned}
& \begin{array}{|l}
M_{I}(s)=\Omega_{I}(s) \\
\text { Omnès function } \\
\text { Gasser \& Rusetsky'18 }
\end{array} \quad\left[P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
\end{aligned} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

- $\quad P_{1}(s)$ determined from a fit to NLO ChPT + experimental Dalitz plot


## $\eta \rightarrow 3 \pi$ Dalitz plot

- In the charged channel: experimental data from WASA, KLOE, BESIII

- New data expected from CLAS and GlueX with very different systematics


## Which value of $\mathbf{Q}^{2}$ impact neutrino data?

- The experimental results point towards a larger value of the axial form factor $\quad M_{A} \sim 1.35 \mathrm{GeV}$
* If true, the value of $\mathrm{M}_{\mathrm{A}}$ saturates the cross section leaving little room for multi nucleon effects
- Is the dipole physically motivated?

$$
F_{A}\left(q^{2}\right)=\frac{F_{A}(0)}{\left(1-\frac{q^{2}}{M_{A}^{2}}\right)^{2}}
$$

The parametrisation has an impact on different $\mathrm{q}^{2}$ dependence ranges on the neutrino data

## Improving the Form Factor parametrization

* For intermediate energy region: Can try to use VMD
- Analytical structure of FF (e.g. $\mathrm{F}_{1}$ or $\mathrm{F}_{\mathrm{A}}$ )


Photon or W sees proton through all hadronic states (with vector or axial-vector Quantum Number)

Processes in unphysical region $\mathrm{t}<4 \mathrm{~m}_{\mathrm{N}}{ }^{2}$

- Resonances (Vector Mesons)

$C:$ ISOVECTOR
$\omega:$ ISOSCALAR

For $\mathrm{F}_{\mathrm{A}}$ (Axial Vector Mesons)
$\mathrm{a}_{1}$ (1230) and $\mathrm{a}_{1}{ }^{\prime}(1647)$
Masjuan et al.'12

$$
F_{A}(t)=g_{A} \frac{m_{a_{1}}^{2} m_{a_{1}}^{2}}{\left(m_{a_{1}}^{2}-t\right)\left(m_{a_{1}}^{2}-t\right)}
$$

## Improving the Form Factor parametrization

* For intermediate energy region: Can try to use VMD, e.g. EM FF
- Dispersion Relations

- Use spectral function from theory or from experiment

Frazer \&Fulco'60, Hohler et al'75


$$
F_{i}(t)=\int_{t_{\mathrm{thr}}}^{\infty} \frac{d t^{\prime}}{\pi} \frac{\operatorname{Im} F_{i}\left(t^{\prime}\right)}{t^{\prime}-t-i 0}
$$

## Improving the Form Factor parametrization

*How to connect to the nucleon?



$$
F_{A}\left(q^{2}\right)=g_{A} \cdot f_{A \rightarrow 3 \pi}\left(q^{2}\right)
$$

$\Rightarrow$ Does not work!


[^0]:    $\Rightarrow$
    goes through weak interactions $\sim G_{F}$
    $G_{F} \simeq 1.17 \times 10^{-5} \mathrm{GeV}^{-2}$

